1
|
Liu Y, Liu X, Zhang S, Liu H, Mo C, Fu Z, Dai J. Molecular dynamics investigation of the stopping power of warm dense hydrogen for electrons. Phys Rev E 2021; 103:063215. [PMID: 34271766 DOI: 10.1103/physreve.103.063215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/01/2021] [Indexed: 11/07/2022]
Abstract
A variety of theoretical models have been proposed to calculate the stopping power of charged particles in matter, which is a fundamental issue in many fields. However, the approximation adopted in these theories will be challenged under warm dense matter conditions. Molecular dynamics (MD) simulation is a good way to validate the effectiveness of these models. We investigate the stopping power of warm dense hydrogen for electrons with projectile energies ranging from 400-10000 eV by means of an electron force field (eFF) method, which can effectively avoid the Coulomb catastrophe in conventional MD calculations. It is found that the stopping power of warm dense hydrogen decreases with increasing temperature of the sample at those high projectile velocities. This phenomenon could be explained by the effect of electronic structure dominated by bound electrons, which is further explicated by a modified random phase approximation (RPA) model based on local density approximation proper to inhomogeneous media. Most of the models extensively accepted by the plasma community, e.g., Landau-Spitzer model, Brown-Preston-Singleton model and RPA model, cannot well address the effect caused by bound electrons so that their predictions of stopping power contradict our result. Therefore, the eFF simulations of this paper reveals the important role played by the bound electrons on stopping power in warm dense plasmas.
Collapse
Affiliation(s)
- Yun Liu
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xing Liu
- Center for Applied Physics and Technology, School of Physics, Peking University, Beijing 100086, China
| | - Shen Zhang
- Department of Physics, National University of Defense Technology, Changsha 410073, China
| | - Hao Liu
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Chongjie Mo
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Zhenguo Fu
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Jiayu Dai
- Department of Physics, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
2
|
Ren J, Deng Z, Qi W, Chen B, Ma B, Wang X, Yin S, Feng J, Liu W, Xu Z, Hoffmann DHH, Wang S, Fan Q, Cui B, He S, Cao Z, Zhao Z, Cao L, Gu Y, Zhu S, Cheng R, Zhou X, Xiao G, Zhao H, Zhang Y, Zhang Z, Li Y, Wu D, Zhou W, Zhao Y. Observation of a high degree of stopping for laser-accelerated intense proton beams in dense ionized matter. Nat Commun 2020; 11:5157. [PMID: 33057005 PMCID: PMC7560615 DOI: 10.1038/s41467-020-18986-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/24/2020] [Indexed: 11/09/2022] Open
Abstract
Intense particle beams generated from the interaction of ultrahigh intensity lasers with sample foils provide options in radiography, high-yield neutron sources, high-energy-density-matter generation, and ion fast ignition. An accurate understanding of beam transportation behavior in dense matter is crucial for all these applications. Here we report the experimental evidence on one order of magnitude enhancement of intense laser-accelerated proton beam stopping in dense ionized matter, in comparison with the current-widely used models describing individual ion stopping in matter. Supported by particle-in-cell (PIC) simulations, we attribute the enhancement to the strong decelerating electric field approaching 1 GV/m that can be created by the beam-driven return current. This collective effect plays the dominant role in the stopping of laser-accelerated intense proton beams in dense ionized matter. This finding is essential for the optimum design of ion driven fast ignition and inertial confinement fusion. A detailed understanding of particle stopping in matter is essential for nuclear fusion and high energy density science. Here, the authors report one order of magnitude enhancement of intense laser-accelerated proton beam stopping in dense ionized matter in comparison with currently used models describing ion stopping in matter.
Collapse
Affiliation(s)
- Jieru Ren
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhigang Deng
- Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Wei Qi
- Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Benzheng Chen
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China.,Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Bubo Ma
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xing Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuai Yin
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jianhua Feng
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wei Liu
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China.,Xi'an Technological University, Xi'an, 710021, China
| | - Zhongfeng Xu
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Dieter H H Hoffmann
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shaoyi Wang
- Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Quanping Fan
- Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Bo Cui
- Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Shukai He
- Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Zhurong Cao
- Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Zongqing Zhao
- Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Leifeng Cao
- Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Yuqiu Gu
- Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Shaoping Zhu
- Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, China.,Institute of Applied Physics and Computational Mathematics, Beijing, 100094, China.,Graduate School, China Academy of Engineering Physics, Beijing, 100088, China
| | - Rui Cheng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 710049, China
| | - Xianming Zhou
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China.,Xianyang Normal University, Xianyang, 712000, China
| | - Guoqing Xiao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 710049, China
| | - Hongwei Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 710049, China
| | - Yihang Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yutong Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Wu
- Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, Hangzhou, 310058, China.
| | - Weimin Zhou
- Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, China.
| | - Yongtao Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|