1
|
Wang M, González L, Saha S, Josić K, Mugler A, Bennett MR. Hyperballistic intercellular signaling through growth assisted positive feedback. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626899. [PMID: 39677820 PMCID: PMC11643040 DOI: 10.1101/2024.12.04.626899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Intercellular signaling in bacteria is often mediated by small molecules secreted by cells. These small molecules disperse via diffusion which limits the speed and spatial extent of information transfer in spatially extended systems. Theory shows that a secondary signal and feedback circuits can speed up the flow of information and allow it to travel further. Here, we construct and test several synthetic circuits in Escherichia coli to determine to what extent a secondary signal and feedback can improve signal propagation in bacterial systems. We find that positive feedback-regulated secondary signals propagate further and faster than diffusion-limited signals. Additionally, the speed at which the signal propagates can accelerate in time, provided the density of the cells within the system increases. These findings provide the foundation for creating fast, long-range signal propagation circuits in spatially extended bacterial systems.
Collapse
|
2
|
Dalwadi MP, Pearce P. Universal dynamics of biological pattern formation in spatio-temporal morphogen variations. Proc Math Phys Eng Sci 2023. [DOI: 10.1098/rspa.2022.0829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
In biological systems, chemical signals termed morphogens self-organize into patterns that are vital for many physiological processes. As observed by Turing in 1952, these patterns are in a state of continual development, and are usually transitioning from one pattern into another. How do cells robustly decode these spatio-temporal patterns into signals in the presence of confounding effects caused by unpredictable or heterogeneous environments? Here, we answer this question by developing a general theory of pattern formation in spatio-temporal variations of ‘pre-pattern’ morphogens, which determine gene-regulatory network parameters. Through mathematical analysis, we identify universal dynamical regimes that apply to wide classes of biological systems. We apply our theory to two paradigmatic pattern-forming systems, and predict that they are robust with respect to non-physiological morphogen variations. More broadly, our theoretical framework provides a general approach to classify the emergent dynamics of pattern-forming systems based on how the bifurcations in their governing equations are traversed.
Collapse
|
3
|
Gu P, Ma Q, Zhao S, Gao J, Li C, Zhou H, Jiang S, Li Q. Application of quorum sensing system in microbial synthesis of valuable chemicals: a mini-review. World J Microbiol Biotechnol 2022; 38:192. [PMID: 35978255 DOI: 10.1007/s11274-022-03382-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
With advantages of low substrates cost, high optical purity of end products and environmentally friendly fermentation process, microbial production of valuable chemicals grow rapidly. Compared with static microbial strain engineering strategies, such as gene deletion, overexpression and mutation, dynamic pathway regulation is a new approach that balances cellular growth and chemical production. Quorum sensing is a natural microbial communication system responsible for cell-density-related cell behaviors. Accordingly, quorum sensing systems can be employed to achieve dynamic regulation in microorganisms without the need for manual intervention or the use of chemical inducers. In this review, natural quorum sensing systems are firstly summarized. Then, recent progress in using quorum sensing circuits in the field of metabolic engineering is highlighted. The current application challenges of quorum sensing systems and future perspectives in microbial synthesis of chemicals are also discussed.
Collapse
Affiliation(s)
- Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Qianqian Ma
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Shuo Zhao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Juan Gao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Changtao Li
- RZBC GROUP CO., LTD., Rizhao, 276800, Shandong, China
| | - Hao Zhou
- RZBC GROUP CO., LTD., Rizhao, 276800, Shandong, China
| | | | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| |
Collapse
|
4
|
Patel K, Rodriguez C, Stabb EV, Hagen SJ. Wavelike propagation of quorum activation through a spatially distributed bacterial population under natural regulation. Phys Biol 2021; 18. [PMID: 34114973 DOI: 10.1088/1478-3975/ac02ac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/18/2021] [Indexed: 11/11/2022]
Abstract
Many bacteria communicate using diffusible pheromone signals known as autoinducers. When the autoinducer concentration reaches a threshold, which requires a minimum population density or 'quorum', the bacteria activate specific gene regulatory pathways. Simple diffusion of autoinducer can activate quorum-dependent pathways in cells that are located at substantial distances from the secreting source. However, modeling has predicted that autoinducer diffusion, coupled with positive feedback regulation in autoinducer synthesis, could also allow a quorum-regulated behavior to spread more rapidly through a population by moving as a self-sustaining front at constant speed. Here we show that such propagation can occur in a population of bacteria whose quorum pathway operates under its own natural regulation. We find that in unstirred populations ofVibrio fischeri, introduction of autoinducer at one location triggers a wavelike traveling front of natural bioluminescence. The front moves with a well-defined speed ∼2.5 mm h-1, eventually outrunning the slower diffusional spreading of the initial stimulus. Consistent with predictions from modeling, the wave travels until late in growth, when population-wide activation occurs due to basal autoinducer production. Subsequent rounds of waves, including waves propagating in the reverse direction, can also be observed late in the growth ofV.fischeriunder natural regulation. Using an engineered,lac-dependent strain, we show that local stimuli other than autoinducers can also elicit a self-sustaining, propagating response. Our data show that the wavelike dynamics predicted by simple mathematical models of quorum signaling are readily detected in bacterial populations functioning under their own natural regulation, and that other, more complex traveling phenomena are also present. Because a traveling wave can substantially increase the efficiency of intercellular communication over macroscopic distances, our data indicate that very efficient modes of communication over distance are available to unmixed populations ofV.fischeriand other microbes.
Collapse
Affiliation(s)
- Keval Patel
- Physics Department, University of Florida, Gainesville, FL 32611-8440, United States of America
| | - Coralis Rodriguez
- Department of Microbiology, University of Georgia, Athens, GA 30602, United States of America
| | - Eric V Stabb
- Department of Microbiology, University of Georgia, Athens, GA 30602, United States of America.,Biological Sciences, College of Liberal Arts and Sciences, University of Illinois, Chicago, IL 60607, United States of America
| | - Stephen J Hagen
- Physics Department, University of Florida, Gainesville, FL 32611-8440, United States of America
| |
Collapse
|
5
|
Fu L, Li Q, Chen C, Zhang Y, Liu Y, Xu L, Zhou Y, Li C, Zhou D, Rittmann BE. Benzoic and salicylic acid are the signaling molecules of Chlorella cells for improving cell growth. CHEMOSPHERE 2021; 265:129084. [PMID: 33261837 DOI: 10.1016/j.chemosphere.2020.129084] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 05/28/2023]
Abstract
Cell-to-cell communication regulates microalgae production via signaling molecules (SMs), but few microalgal SM species are known. Here, we document two new microalgae SMs, benzoic acid (BA) and salicylic acid (SA). Initially, crude SMs were extracted from a microalgae culture in which microalgae grew on heterotrophic-enriched phosphorus nutrition. The extracted SMs enhanced Chlorella growth by ∼72%, promoted nutrient uptake, and up-regulated the mitogen-activated protein-kinase signaling cascade. Fourier transform infrared and nuclear magnetic resonance analyses identified the putative SMs was aromatic carboxylic acids. BA and SA were identified using high-resolution mass spectrometry. BA and SA addition increased cell growth by ∼75% and ∼25%; and improved ATP production by ∼35% and ∼20%. Transcriptomic analysis showed that BA and SA were biosynthesized via CoA-dependent, non-oxidative pathway. The SMs upregulated TCA-cycle enzymes, which promoted carbon assimilation and activated DNA-replicating enzyme, so that accelerated cell division. This study identified two new SMs for microalgae cell communication and provides means to identify other SMs.
Collapse
Affiliation(s)
- Liang Fu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Qingcheng Li
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Congli Chen
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China; National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yueju Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yinglu Liu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Liang Xu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yihan Zhou
- National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Chengbin Li
- Changchun Water Group Co. Ltd, Changchun, 130021, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|