1
|
Li H, Liu J, Li C, Du L. Vibrational resonance and chaos control in the canonical Chua's circuit with a smooth nonlinear resistor. Sci Rep 2024; 14:31013. [PMID: 39730851 DOI: 10.1038/s41598-024-82250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
Vibrational resonance and chaos control in the canonical Chua's circuit with a smooth cubic nonlinear resistor is investigated by an analog circuit experiment and a dynamical model. By adjusting the amplitude and frequency of the high-frequency signal while keeping other parameters constant, the system exhibits a resonant peak in its response to the weak low-frequency signal. Notably, when the amplitude of the high-frequency signal exceeds the critical threshold, the system undergoes a transition from a single-scroll chaotic attractor to a double-scroll chaotic attractor, marking the emergence of vibrational resonance. In particular, the maximum of the system's response amplitude is insusceptible when the frequency of the high-frequency signal varies over a broad range, which indicates the strong robustness of the vibrational resonance in the present system. The experimental results are coincident with the numerical simulations. This research has potential applications in chaos control and weak signal detection.
Collapse
Affiliation(s)
- Hao Li
- Department of Physics, Yunnan University, Kunming, 650500, China
- School of Information Science and Engineering, Yunnan University, Kunming, 650500, China
| | - Jiangling Liu
- Department of Physics, Yunnan University, Kunming, 650500, China
| | - Chaorun Li
- Department of Physics, Yunnan University, Kunming, 650500, China
| | - Luchun Du
- Department of Physics, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
2
|
Hu HW, Du L, Fan AL, Deng ZC, Grebogi C. Entropic stochastic resonance of finite-size particles in confined Brownian transport. Phys Rev E 2024; 109:054110. [PMID: 38907477 DOI: 10.1103/physreve.109.054110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/05/2024] [Indexed: 06/24/2024]
Abstract
We demonstrate the existence of entropic stochastic resonance (ESR) of passive Brownian particles with finite size in a double- or triple-circular confined cavity, and compare the similarities and differences of ESR in the double-circular cavity and triple-circular cavity. When the diffusion of Brownian particles is constrained to the double- or triple-circular cavity, the presence of irregular boundaries leads to entropic barriers. The interplay between the entropic barriers, a periodic input signal, the gravity of particles, and intrinsic thermal noise may give rise to a peak in the spectral amplification factor and therefore to the appearance of the ESR phenomenon. It is shown that ESR can occur in both a double-circular cavity and a triple-circular cavity, and by adjusting some parameters of the system, the response of the system can be optimized. The differences are that the spectral amplification factor in a triple-circular cavity is significantly larger than that in a double-circular cavity, and compared with the ESR in a double-circular cavity, the ESR effect in a triple-circular cavity occurs within a wider range of external force parameters. In addition, the strength of ESR also depends on the particle radius, and smaller particles can induce more obvious ESR, indicating that the size effect cannot be safely neglected. The ESR phenomenon usually occurs in small-scale systems where confinement and noise play an important role. Therefore, the mechanism that is found could be used to manipulate and control nanodevices and biomolecules.
Collapse
Affiliation(s)
- Hai-Wei Hu
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
- MIIT Key Laboratory of Dynamics and Control of Complex Systems, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lin Du
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
- MIIT Key Laboratory of Dynamics and Control of Complex Systems, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ai-Li Fan
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
- MIIT Key Laboratory of Dynamics and Control of Complex Systems, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zi-Chen Deng
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
- MIIT Key Laboratory of Dynamics and Control of Complex Systems, Northwestern Polytechnical University, Xi'an 710072, China
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Celso Grebogi
- Institute for Complex Systems and Mathematical Biology, Kingdom College, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
| |
Collapse
|
3
|
Li S, Wang Z, Yang J, Sanjuán MAF, Huang S, Lou L. Ultrasensitive vibrational resonance induced by small disturbances. CHAOS (WOODBURY, N.Y.) 2023; 33:123111. [PMID: 38055719 DOI: 10.1063/5.0172108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023]
Abstract
We have found two kinds of ultrasensitive vibrational resonance in coupled nonlinear systems. It is particularly worth pointing out that this ultrasensitive vibrational resonance is transient behavior caused by transient chaos. Considering a long-term response, the system will transform from transient chaos to a periodic response. The pattern of vibrational resonance will also transform from ultrasensitive vibrational resonance to conventional vibrational resonance. This article focuses on the transient ultrasensitive vibrational resonance phenomenon. It is induced by a small disturbance of the high-frequency excitation and the initial simulation conditions, respectively. The damping coefficient and the coupling strength are the key factors to induce the ultrasensitive vibrational resonance. By increasing these two parameters, the vibrational resonance pattern can be transformed from ultrasensitive vibrational resonance to conventional vibrational resonance. The reason for different vibrational resonance patterns to occur lies in the state of the system response. The response usually presents transient chaotic behavior when the ultrasensitive vibrational resonance appears and the plot of the response amplitude vs the controlled parameters shows a highly fractalized pattern. When the response is periodic or doubly periodic, it usually corresponds to the conventional vibrational resonance. The ultrasensitive vibrational resonance not only occurs at the excitation frequency, but it also occurs at some more nonlinear frequency components. The ultrasensitive vibrational resonance as transient behavior and the transformation of vibrational resonance patterns are new phenomena in coupled nonlinear systems.
Collapse
Affiliation(s)
- Shangyuan Li
- Jiangsu Key Laboratory of Mine Mechanical and Electrical Equipment, School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China
| | - Zhongqiu Wang
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China
| | - Jianhua Yang
- Jiangsu Key Laboratory of Mine Mechanical and Electrical Equipment, School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China
| | - Miguel A F Sanjuán
- Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Shengping Huang
- Jiangsu Key Laboratory of Mine Mechanical and Electrical Equipment, School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China
| | - Litai Lou
- Jiangsu Key Laboratory of Mine Mechanical and Electrical Equipment, School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China
| |
Collapse
|
4
|
Sarkar P, Paul S, Ray DS. Subharmonics and superharmonics of the weak field in a driven two-level quantum system: Vibrational resonance enhancement. Phys Rev E 2021; 104:014202. [PMID: 34412231 DOI: 10.1103/physreve.104.014202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/09/2021] [Indexed: 11/07/2022]
Abstract
We consider a quantum two-level system in bichromatic classical time-periodic fields, the frequency of one of which far exceeds that of the other. Based on systematic separation of timescales and averaging over the fast motion a reduced quantum dynamics in the form of a nonlinear forced Mathieu equation is derived to identify the stable oscillatory resonance zones intercepted by unstable zones in the frequency-amplitude plot. We show how this forcing of the dressed two-level system may generate the subharmonics and superharmonics of the weak field in the stable region, which can be amplified by optimization of the strength of the high frequency field. We have carried out detailed numerical simulations of the driven quantum dynamics to corroborate the theoretical analysis.
Collapse
Affiliation(s)
- Prasun Sarkar
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Shibashis Paul
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Deb Shankar Ray
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
5
|
Carusela MF, Malgaretti P, Rubi JM. Antiresonant driven systems for particle manipulation. Phys Rev E 2021; 103:062102. [PMID: 34271751 DOI: 10.1103/physreve.103.062102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/17/2021] [Indexed: 11/07/2022]
Abstract
We report on the onset of antiresonant behavior of mass transport systems driven by time-dependent forces. Antiresonances arise from the coupling of a sufficiently high number of space-time modes of the force. The presence of forces having a wide space-time spectrum, a necessary condition for the formation of an antiresonance, is typical of confined systems with uneven and deformable walls that induce entropic forces dependent on space and time. We have analyzed, in particular, the case of polymer chains confined in a flexible channel and shown how they can be sorted and trapped. The presence of resonance-antiresonance pairs found can be exploited to design protocols able to engineer optimal transport processes and to manipulate the dynamics of nano-objects.
Collapse
Affiliation(s)
- M Florencia Carusela
- Instituto de Ciencias, Universidad Nacional de General Sarmiento, Juan María Gutiérrez 1150, B1613 Los Polvorines, Buenos Aires, Argentina.,National Scientific and Technical Research Council, Argentina
| | - Paolo Malgaretti
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany.,IV Institute for Theoretical Physics, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.,Helmholtz Institut Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Fürther Str. 248, 90429 Nürnberg, Germany
| | - J Miguel Rubi
- Departament de Física de la Materia Condensada, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
6
|
Vincent UE, McClintock PVE, Khovanov IA, Rajasekar S. Vibrational and stochastic resonances in driven nonlinear systems: part 2. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20210003. [PMID: 33840217 PMCID: PMC8366907 DOI: 10.1098/rsta.2021.0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nonlinearity is ubiquitous in both natural and engineering systems. The resultant dynamics has emerged as a multidisciplinary field that has been very extensively investigated, due partly to the potential occurrence of nonlinear phenomena in all branches of sciences, engineering and medicine. Driving nonlinear systems with external excitations can yield a plethora of intriguing and important phenomena-one of the most prominent being that of resonance. In the presence of additional harmonic or stochastic excitation, two exotic forms of resonance can arise: vibrational resonance or stochastic resonance, respectively. Several promising state-of-the-art technologies that were not covered in part 2 of this theme issue are discussed here. They include inter alia the improvement of image quality, the design of machines and devices that exert vibrations on materials, the harvesting of energy from various forms of ambient vibration and control of aerodynamic instabilities. They form an important part of the theme issue as a whole, which is dedicated to an overview of vibrational and stochastic resonances in driven nonlinear systems. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 2)'.
Collapse
Affiliation(s)
- U. E. Vincent
- Department of Physical Sciences, Redeemer’s University, P.M.B. 230, Ede, Nigeria
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | | | - I. A. Khovanov
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - S. Rajasekar
- School of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| |
Collapse
|
7
|
Du LC, Yue WH, Jiang JH, Yang LL, Ge MM. Entropic stochastic resonance induced by a transverse driving force. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200228. [PMID: 33840218 DOI: 10.1098/rsta.2020.0228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 05/22/2023]
Abstract
The phenomenon of entropic stochastic resonance (ESR) is investigated with the presence of a time-periodic force in the transverse direction. Simulation results manifest that the ESR can survive even if there is no static bias force in any direction, just if a transverse driving field is applied. In the weak noise region, the transverse driving force leads to a giant-suppression of the escape rate from one well to another, i.e. the entropic trapping. The increase in noise intensity will eliminate this suppression and induce the ESR phenomenon. An alternative quantity, called the mean free flying time, is also proposed to characterize the ESR as well as the conventional spectral power amplification. The ESR can be modulated conveniently by the transverse periodic force, which implies an alternative method for controlling the dynamics of small-scale systems. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 2)'.
Collapse
Affiliation(s)
- L C Du
- Department of Physics, Yunnan University, Kunming, 650091, People's Republic of China
| | - W H Yue
- Department of Physics, Yunnan University, Kunming, 650091, People's Republic of China
| | - J H Jiang
- Department of Physics, Yunnan University, Kunming, 650091, People's Republic of China
| | - L L Yang
- Department of Physics, Yunnan University, Kunming, 650091, People's Republic of China
| | - M M Ge
- Department of Physics, Yunnan University, Kunming, 650091, People's Republic of China
| |
Collapse
|