1
|
Sattari S, S. Basak U, Mohiuddin M, Toda M, Komatsuzaki T. Inferring the roles of individuals in collective systems using information-theoretic measures of influence. Biophys Physicobiol 2024; 21:e211014. [PMID: 39175852 PMCID: PMC11338685 DOI: 10.2142/biophysico.bppb-v21.s014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/18/2024] [Indexed: 08/24/2024] Open
Abstract
In collective systems, influence of individuals can permeate an entire group through indirect interactionscom-plicating any scheme to understand individual roles from observations. A typical approach to understand an individuals influence on another involves consideration of confounding factors, for example, by conditioning on other individuals outside of the pair. This becomes unfeasible in many cases as the number of individuals increases. In this article, we review some of the unforeseen problems that arise in understanding individual influence in a collective such as single cells, as well as some of the recent works which address these issues using tools from information theory.
Collapse
Affiliation(s)
- Sulimon Sattari
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001‑0020, Japan
| | - Udoy S. Basak
- Pabna University of Science and Technology, Pabna 6600, Bangladesh
| | - M. Mohiuddin
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060‑0812, Japan
- Comilla University, Cumilla 3506, Bangladesh
| | - Mikito Toda
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001‑0020, Japan
- Faculty Division of Natural Sciences, Nara Women’s University, Nara 630‑8506, Japan
- Graduate School of Information Science, University of Hyogo, Kobe, Hyogo 650‑0047, Japan
| | - Tamiki Komatsuzaki
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001‑0020, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060‑0812, Japan
- Institute for Chemical Reaction Design and Discovery (WPI‑ICReDD), Hokkaido University, Sapporo, Hokkaido 001‑0021, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565‑0871, Japan
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Ibaraki 567‑0047, Japan
| |
Collapse
|
2
|
Tan P, Miles CE. Intrinsic statistical separation of subpopulations in heterogeneous collective motion via dimensionality reduction. Phys Rev E 2024; 109:014403. [PMID: 38366514 DOI: 10.1103/physreve.109.014403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/12/2023] [Indexed: 02/18/2024]
Abstract
Collective motion of locally interacting agents is found ubiquitously throughout nature. The inability to probe individuals has driven longstanding interest in the development of methods for inferring the underlying interactions. In the context of heterogeneous collectives, where the population consists of individuals driven by different interactions, existing approaches require some knowledge about the heterogeneities or underlying interactions. Here, we investigate the feasibility of identifying the identities in a heterogeneous collective without such prior knowledge. We numerically explore the behavior of a heterogeneous Vicsek model and find sufficiently long trajectories intrinsically cluster in a principal component analysis-based dimensionally reduced model-agnostic description of the data. We identify how heterogeneities in each parameter in the model (interaction radius, noise, population proportions) dictate this clustering. Finally, we show the generality of this phenomenon by finding similar behavior in a heterogeneous D'Orsogna model. Altogether, our results establish and quantify the intrinsic model-agnostic statistical disentanglement of identities in heterogeneous collectives.
Collapse
Affiliation(s)
- Pei Tan
- Mathematical, Computational, and Systems Biology Graduate Program, University of California, Irvine 92697, USA
| | | |
Collapse
|
3
|
Sattari S, Basak US, James RG, Perrin LW, Crutchfield JP, Komatsuzaki T. Modes of information flow in collective cohesion. SCIENCE ADVANCES 2022; 8:eabj1720. [PMID: 35138896 PMCID: PMC8827646 DOI: 10.1126/sciadv.abj1720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/20/2021] [Indexed: 05/23/2023]
Abstract
Pairwise interactions are fundamental drivers of collective behavior-responsible for group cohesion. The abiding question is how each individual influences the collective. However, time-delayed mutual information and transfer entropy, commonly used to quantify mutual influence in aggregated individuals, can result in misleading interpretations. Here, we show that these information measures have substantial pitfalls in measuring information flow between agents from their trajectories. We decompose the information measures into three distinct modes of information flow to expose the role of individual and group memory in collective behavior. It is found that decomposed information modes between a single pair of agents reveal the nature of mutual influence involving many-body nonadditive interactions without conditioning on additional agents. The pairwise decomposed modes of information flow facilitate an improved diagnosis of mutual influence in collectives.
Collapse
Affiliation(s)
- Sulimon Sattari
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Udoy S. Basak
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
- Pabna University of Science and Technology, Pabna 6600, Bangladesh
| | - Ryan G. James
- Reddit Inc., 420 Taylor Street, San Francisco, CA 94102, USA
- Department of Physics, Complexity Sciences Center, University of California, Davis, Davis, CA 95616, USA
| | - Louis W. Perrin
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
- École Normale Supérieure de Rennes, Robert Schumann, Campus de, Av. de Ker Lann, 35170 Bruz, France
| | - James P. Crutchfield
- Department of Physics, Complexity Sciences Center, University of California, Davis, Davis, CA 95616, USA
| | - Tamiki Komatsuzaki
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Graduate School of Chemical Sciences and Engineering Materials Chemistry and Energy Course, Hokkaido University Kita 13, Nishi 8, Kita-ku Sapporo, Hokkaido 060-0812, Japan
| |
Collapse
|
4
|
Basak US, Sattari S, Hossain M, Horikawa K, Komatsuzaki T. Transfer entropy dependent on distance among agents in quantifying leader-follower relationships. Biophys Physicobiol 2021; 18:131-144. [PMID: 34178564 PMCID: PMC8214925 DOI: 10.2142/biophysico.bppb-v18.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/13/2021] [Indexed: 12/01/2022] Open
Abstract
Synchronized movement of (both unicellular and multicellular) systems can be observed almost everywhere. Understanding of how organisms are regulated to synchronized behavior is one of the challenging issues in the field of collective motion. It is hypothesized that one or a few agents in a group regulate(s) the dynamics of the whole collective, known as leader(s). The identification of the leader (influential) agent(s) is very crucial. This article reviews different mathematical models that represent different types of leadership. We focus on the improvement of the leader-follower classification problem. It was found using a simulation model that the use of interaction domain information significantly improves the leader-follower classification ability using both linear schemes and information-theoretic schemes for quantifying influence. This article also reviews different schemes that can be used to identify the interaction domain using the motion data of agents.
Collapse
Affiliation(s)
- Udoy S. Basak
- Graduate School of Life Science, Transdisciplinary Life Science Course, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
- Pabna University of Science and Technology, Pabna 6600, Bangladesh
| | - Sulimon Sattari
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Motaleb Hossain
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
- University of Dhaka, Dhaka 1000, Bangladesh
| | - Kazuki Horikawa
- Department of Optical Imaging, The Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Tamiki Komatsuzaki
- Graduate School of Life Science, Transdisciplinary Life Science Course, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- Graduate School of Chemical Sciences and Engineering Materials Chemistry and Engineering Course, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| |
Collapse
|
5
|
Basak US, Sattari S, Hossain MM, Horikawa K, Komatsuzaki T. An information-theoretic approach to infer the underlying interaction domain among elements from finite length trajectories in a noisy environment. J Chem Phys 2021; 154:034901. [PMID: 33499629 DOI: 10.1063/5.0034467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transfer entropy in information theory was recently demonstrated [Basak et al., Phys. Rev. E 102, 012404 (2020)] to enable us to elucidate the interaction domain among interacting elements solely from an ensemble of trajectories. Therefore, only pairs of elements whose distances are shorter than some distance variable, termed cutoff distance, are taken into account in the computation of transfer entropies. The prediction performance in capturing the underlying interaction domain is subject to the noise level exerted on the elements and the sufficiency of statistics of the interaction events. In this paper, the dependence of the prediction performance is scrutinized systematically on noise level and the length of trajectories by using a modified Vicsek model. The larger the noise level and the shorter the time length of trajectories, the more the derivative of average transfer entropy fluctuates, which makes the identification of the interaction domain in terms of the position of global minimum of the derivative of average transfer entropy difficult. A measure to quantify the degree of strong convexity at the coarse-grained level is proposed. It is shown that the convexity score scheme can identify the interaction distance fairly well even while the position of the global minimum of the derivative of average transfer entropy does not. We also derive an analytical model to explain the relationship between the interaction domain and the change in transfer entropy that supports our cutoff distance technique to elucidate the underlying interaction domain from trajectories.
Collapse
Affiliation(s)
- Udoy S Basak
- Graduate School of Life Science, Transdisciplinary Life Science Course, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Sulimon Sattari
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan
| | - Md Motaleb Hossain
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan
| | - Kazuki Horikawa
- Department of Optical Imaging, The Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima City, Tokushima 770-8503, Japan
| | - Tamiki Komatsuzaki
- Graduate School of Life Science, Transdisciplinary Life Science Course, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|