1
|
Barbier-Chebbah A, Bénichou O, Voituriez R, Guérin T. Long-term memory induced correction to Arrhenius law. Nat Commun 2024; 15:7408. [PMID: 39198409 PMCID: PMC11358423 DOI: 10.1038/s41467-024-50938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
The Kramers escape problem is a paradigmatic model for the kinetics of rare events, which are usually characterized by Arrhenius law. So far, analytical approaches have failed to capture the kinetics of rare events in the important case of non-Markovian processes with long-term memory, as occurs in the context of reactions involving proteins, long polymers, or strongly viscoelastic fluids. Here, based on a minimal model of non-Markovian Gaussian process with long-term memory, we determine quantitatively the mean FPT to a rare configuration and provide its asymptotics in the limit of a large energy barrier E. Our analysis unveils a correction to Arrhenius law, induced by long-term memory, which we determine analytically. This correction, which we show can be quantitatively significant, takes the form of a second effective energy barrierE ' < E and captures the dependence of rare event kinetics on initial conditions, which is a hallmark of long-term memory. Altogether, our results quantify the impact of long-term memory on rare event kinetics, beyond Arrhenius law.
Collapse
Affiliation(s)
- A Barbier-Chebbah
- Decision and Bayesian Computation, USR 3756 (C3BI/DBC) and Neuroscience Department CNRS UMR 3751, Institut Pasteur, Université de Paris, CNRS, 75015, Paris, France
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS/UPMC, 4 Place Jussieu, 75005, Paris, France
| | - O Bénichou
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS/UPMC, 4 Place Jussieu, 75005, Paris, France.
| | - R Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS/UPMC, 4 Place Jussieu, 75005, Paris, France
- Laboratoire Jean Perrin, CNRS/UPMC, 4 Place Jussieu, 75005, Paris, France
| | - T Guérin
- Laboratoire Ondes et Matière d'Aquitaine, CNRS/University of Bordeaux, F-33400, Talence, France
| |
Collapse
|
2
|
Verdier H, Laurent F, Cassé A, Vestergaard CL, Masson JB. Variational inference of fractional Brownian motion with linear computational complexity. Phys Rev E 2022; 106:055311. [PMID: 36559393 DOI: 10.1103/physreve.106.055311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
We introduce a simulation-based, amortized Bayesian inference scheme to infer the parameters of random walks. Our approach learns the posterior distribution of the walks' parameters with a likelihood-free method. In the first step a graph neural network is trained on simulated data to learn optimized low-dimensional summary statistics of the random walk. In the second step an invertible neural network generates the posterior distribution of the parameters from the learned summary statistics using variational inference. We apply our method to infer the parameters of the fractional Brownian motion model from single trajectories. The computational complexity of the amortized inference procedure scales linearly with trajectory length, and its precision scales similarly to the Cramér-Rao bound over a wide range of lengths. The approach is robust to positional noise, and generalizes to trajectories longer than those seen during training. Finally, we adapt this scheme to show that a finite decorrelation time in the environment can furthermore be inferred from individual trajectories.
Collapse
Affiliation(s)
- Hippolyte Verdier
- Decision and Bayesian Computation, USR 3756 (C3BI/DBC) and Neuroscience Department CNRS UMR 3751, Institut Pasteur, Université de Paris, CNRS, 75015 Paris, France
- Histopathology and Bio-Imaging Group, Sanofi, R&D, 94400 Vitry-Sur-Seine, France
| | - François Laurent
- Decision and Bayesian Computation, USR 3756 (C3BI/DBC) and Neuroscience Department CNRS UMR 3751, Institut Pasteur, Université de Paris, CNRS, 75015 Paris, France
| | - Alhassan Cassé
- Histopathology and Bio-Imaging Group, Sanofi, R&D, 94400 Vitry-Sur-Seine, France
| | - Christian L Vestergaard
- Decision and Bayesian Computation, USR 3756 (C3BI/DBC) and Neuroscience Department CNRS UMR 3751, Institut Pasteur, Université de Paris, CNRS, 75015 Paris, France
| | - Jean-Baptiste Masson
- Decision and Bayesian Computation, USR 3756 (C3BI/DBC) and Neuroscience Department CNRS UMR 3751, Institut Pasteur, Université de Paris, CNRS, 75015 Paris, France
| |
Collapse
|
3
|
Vinod D, Cherstvy AG, Metzler R, Sokolov IM. Time-averaging and nonergodicity of reset geometric Brownian motion with drift. Phys Rev E 2022; 106:034137. [PMID: 36266856 DOI: 10.1103/physreve.106.034137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
How do near-bankruptcy events in the past affect the dynamics of stock-market prices in the future? Specifically, what are the long-time properties of a time-local exponential growth of stock-market prices under the influence of stochastically occurring economic crashes? Here, we derive the ensemble- and time-averaged properties of the respective "economic" or geometric Brownian motion (GBM) with a nonzero drift exposed to a Poissonian constant-rate price-restarting process of "resetting." We examine-based both on thorough analytical calculations and on findings from systematic stochastic computer simulations-the general situation of reset GBM with a nonzero [positive] drift and for all special cases emerging for varying parameters of drift, volatility, and reset rate in the model. We derive and summarize all short- and long-time dependencies for the mean-squared displacement (MSD), the variance, and the mean time-averaged MSD (TAMSD) of the process of Poisson-reset GBM under the conditions of both rare and frequent resetting. We consider three main regions of model parameters and categorize the crossovers between different functional behaviors of the statistical quantifiers of this process. The analytical relations are fully supported by the results of computer simulations. In particular, we obtain that Poisson-reset GBM is a nonergodic stochastic process, with generally MSD(Δ)≠TAMSD(Δ) and Variance(Δ)≠TAMSD(Δ) at short lag times Δ and for long trajectory lengths T. We investigate the behavior of the ergodicity-breaking parameter in each of the three regions of parameters and examine its dependence on the rate of reset at Δ/T≪1. Applications of these theoretical results to the analysis of prices of reset-containing options are pertinent.
Collapse
Affiliation(s)
- Deepak Vinod
- Institute for Physics & Astronomy, University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476 Potsdam-Golm, Germany
| | - Andrey G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476 Potsdam-Golm, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476 Potsdam-Golm, Germany
| | - Igor M Sokolov
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
- IRIS Adlershof, Zum Großen Windkanal 6, 12489 Berlin, Germany
| |
Collapse
|
4
|
Wiese KJ. Theory and experiments for disordered elastic manifolds, depinning, avalanches, and sandpiles. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086502. [PMID: 35943081 DOI: 10.1088/1361-6633/ac4648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 12/23/2021] [Indexed: 06/15/2023]
Abstract
Domain walls in magnets, vortex lattices in superconductors, contact lines at depinning, and many other systems can be modeled as an elastic system subject to quenched disorder. The ensuing field theory possesses a well-controlled perturbative expansion around its upper critical dimension. Contrary to standard field theory, the renormalization group (RG) flow involves a function, the disorder correlator Δ(w), and is therefore termed the functional RG. Δ(w) is a physical observable, the auto-correlation function of the center of mass of the elastic manifold. In this review, we give a pedagogical introduction into its phenomenology and techniques. This allows us to treat both equilibrium (statics), and depinning (dynamics). Building on these techniques, avalanche observables are accessible: distributions of size, duration, and velocity, as well as the spatial and temporal shape. Various equivalences between disordered elastic manifolds, and sandpile models exist: an elastic string driven at a point and the Oslo model; disordered elastic manifolds and Manna sandpiles; charge density waves and Abelian sandpiles or loop-erased random walks. Each of the mappings between these systems requires specific techniques, which we develop, including modeling of discrete stochastic systems via coarse-grained stochastic equations of motion, super-symmetry techniques, and cellular automata. Stronger than quadratic nearest-neighbor interactions lead to directed percolation, and non-linear surface growth with additional Kardar-Parisi-Zhang (KPZ) terms. On the other hand, KPZ without disorder can be mapped back to disordered elastic manifolds, either on the directed polymer for its steady state, or a single particle for its decay. Other topics covered are the relation between functional RG and replica symmetry breaking, and random-field magnets. Emphasis is given to numerical and experimental tests of the theory.
Collapse
Affiliation(s)
- Kay Jörg Wiese
- Laboratoire de physique, Département de physique de l'ENS, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 75005 Paris, France
| |
Collapse
|
5
|
Sadhu T, Wiese KJ. Functionals of fractional Brownian motion and the three arcsine laws. Phys Rev E 2021; 104:054112. [PMID: 34942782 DOI: 10.1103/physreve.104.054112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/30/2021] [Indexed: 02/05/2023]
Abstract
Fractional Brownian motion is a non-Markovian Gaussian process indexed by the Hurst exponent H∈(0,1), generalizing standard Brownian motion to account for anomalous diffusion. Functionals of this process are important for practical applications as a standard reference point for nonequilibrium dynamics. We describe a perturbation expansion allowing us to evaluate many nontrivial observables analytically: We generalize the celebrated three arcsine laws of standard Brownian motion. The functionals are: (i) the fraction of time the process remains positive, (ii) the time when the process last visits the origin, and (iii) the time when it achieves its maximum (or minimum). We derive expressions for the probability of these three functionals as an expansion in ɛ=H-1/2, up to second order. We find that the three probabilities are different, except for H=1/2, where they coincide. Our results are confirmed to high precision by numerical simulations.
Collapse
Affiliation(s)
- Tridib Sadhu
- Department of Theoretical Physics, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Mumbai 400005, India
| | - Kay Jörg Wiese
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|