1
|
Wittmann R, Abdoli I, Sharma A, Brader JM. Confined active particles with spatially dependent Lorentz force: An odd twist to the "best Fokker-Planck approximation". Phys Rev E 2025; 111:025412. [PMID: 40103117 DOI: 10.1103/physreve.111.025412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/14/2025] [Indexed: 03/20/2025]
Abstract
We derive a version of the so-called "best Fokker-Planck approximation" (BFPA) to describe the spatial properties of interacting active Ornstein-Uhlenbeck particles in arbitrary spatial dimensions. In doing so, we also take into account the odd-diffusive contribution of the Lorentz force acting on a charged particle in a spatially dependent magnetic field, sticking to the overdamped limit. While the BFPA itself does not turn out to be widely useful, our general approach allows us to deduce an appropriate generalization of the Fox approximation, which we use to characterize the stationary behavior of a single active particle in an external potential by deriving analytic expressions for configurational probability distributions (or effective potentials). In agreement with computer simulations, our theory predicts that the Lorentz force reduces the effective attraction and thus the probability to find an active particle in the vicinity of a repulsive wall. Even for an inhomogeneous magnetic field, our theoretical findings provide useful qualitative insights, specifically regarding the location of accumulation regions.
Collapse
Affiliation(s)
- René Wittmann
- Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II: Weiche Materie, D-40225 Düsseldorf, Germany
- Max Rubner-Institut, Institut für Sicherheit und Qualität bei Fleisch, D-95326 Kulmbach, Germany
| | - Iman Abdoli
- Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II: Weiche Materie, D-40225 Düsseldorf, Germany
| | - Abhinav Sharma
- Universität Augsburg, Mathematisch-Naturwissenschaftlich-Technische Fakultät, Institut für Physik, Universitätsstraße 1, D-86159 Augsburg, Germany
- Leibniz-Institut für Polymerforschung Dresden, Institut Theory der Polymere, D-01069 Dresden, Germany
| | - Joseph M Brader
- University of Fribourg, Department of Physics, CH-1700 Fribourg, Switzerland
| |
Collapse
|
2
|
Boriskovsky D, Lindner B, Roichman Y. The fluctuation-dissipation relation holds for a macroscopic tracer in an active bath. SOFT MATTER 2024; 20:8017-8022. [PMID: 39359188 DOI: 10.1039/d4sm00808a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The fluctuation-dissipation relation (FDR) links thermal fluctuations and dissipation at thermal equilibrium through temperature. Extending it beyond equilibrium conditions in pursuit of broadening thermodynamics is often feasible, albeit with system-dependent specific conditions. We demonstrate experimentally that a generalized FDR holds for a harmonically trapped tracer colliding with self-propelled walkers. The generalized FDR remains valid across a large spectrum of active fluctuation frequencies, extending from underdamped to critically damped dynamics, which we attribute to a single primary channel for energy input and dissipation in our system.
Collapse
Affiliation(s)
- Dima Boriskovsky
- Raymond & Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, 10115 Berlin, Germany
- Physics Department of Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
| | - Yael Roichman
- Raymond & Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel.
- Raymond & Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Shee A, Henkes S, Huepe C. Emergent mesoscale correlations in active solids with noisy chiral dynamics. SOFT MATTER 2024; 20:7865-7879. [PMID: 39315646 DOI: 10.1039/d4sm00958d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
We present the linear response theory for an elastic solid composed of active Brownian particles with intrinsic individual chirality, deriving both a normal mode formulation and a continuum elastic formulation. Using this theory, we compute analytically the velocity correlations and energy spectra under different conditions, showing an excellent agreement with simulations. We generate the corresponding phase diagram, identifying chiral and achiral disordered regimes (for high chirality or noise levels), as well as chiral and achiral states with mesoscopic-range order (for low chirality and noise). The chiral ordered states display mesoscopic spatial correlations and oscillating time correlations, but no wave propagation. In the high chirality regime, we find a peak in the elastic energy spectrum that leads to a non-monotonic behavior with increasing noise strength that is consistent with the emergence of the 'hammering state' recently identified in chiral glasses. Finally, we show numerically that our theory, despite its linear response nature, can be applied beyond the idealized homogeneous solid assumed in our derivations. Indeed, by increasing the level of activity, we show that it remains a good approximation of the system dynamics until just below the melting transition. In addition, we show that there is still an excellent agreement between our analytical results and simulations when we extend our results to heterogeneous solids composed of mixtures of active particles with different intrinsic chirality and noise levels. The derived linear response theory is therefore robust and applicable to a broad range of real-world active systems. Our work provides a thorough analytical and numerical description of the emergent states in a densely packed system of chiral self-propelled Brownian disks, thus allowing a detailed understanding of the phases and dynamics identified in a minimal chiral active system.
Collapse
Affiliation(s)
- Amir Shee
- Northwestern Institute on Complex Systems and ESAM, Northwestern University, Evanston, IL 60208, USA
| | - Silke Henkes
- Lorentz Institute for Theoretical Physics, LION, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands.
| | - Cristián Huepe
- Northwestern Institute on Complex Systems and ESAM, Northwestern University, Evanston, IL 60208, USA
- School of Systems Science, Beijing Normal University, Beijing, People's Republic of China
- CHuepe Labs, 2713 West August Blvd #1, Chicago, IL 60622, USA.
| |
Collapse
|
4
|
Debets VE, Sarfati L, Voigtmann T, Janssen LMC. Microscopic theory for nonequilibrium correlation functions in dense active fluids. Phys Rev E 2024; 109:054605. [PMID: 38907395 DOI: 10.1103/physreve.109.054605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/09/2024] [Indexed: 06/24/2024]
Abstract
One of the key hallmarks of dense active matter in the liquid, supercooled, and solid phases is the so-called equal-time velocity correlations. Crucially, these correlations can emerge spontaneously, i.e., they require no explicit alignment interactions, and therefore represent a generic feature of dense active matter. This indicates that for a meaningful comparison or possible mapping between active and passive liquids one not only needs to understand their structural properties, but also the impact of these velocity correlations. This has already prompted several simulation and theoretical studies, though they are mostly focused on athermal systems and thus overlook the effect of translational diffusion. Here, we present a fully microscopic method to calculate nonequilibrium correlations in two-dimensional systems of thermal active Brownian particles (ABPs). We use the integration through transients formalism together with (active) mode-coupling theory and analytically calculate qualitatively consistent static structure factors and active velocity correlations. We complement our theoretical results with simulations of both thermal and athermal ABPs which exemplify the disruptive role that thermal noise has on velocity correlations.
Collapse
Affiliation(s)
| | - Lila Sarfati
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Département de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, 24 rue Lhomond, 75230 Paris Cedex 05, France
| | | | | |
Collapse
|
5
|
Teboul V. Dynamic phase transition induced by active molecules in a supercooled liquid. Phys Rev E 2023; 108:024605. [PMID: 37723732 DOI: 10.1103/physreve.108.024605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/21/2023] [Indexed: 09/20/2023]
Abstract
The purpose of this work is to use active particles to investigate the effect of facilitation on supercooled liquids. To this end we examine the behavior of a model supercooled liquid that is doped with a mixture of active particles and slowed particles. To simulate the facilitation mechanism, the activated particles are subjected to a force that follows the mobility of their most mobile neighboring molecule, while the slowed particles experience a friction force. Upon activation, we observe a fluidization of the entire medium along with a significant increase in dynamic heterogeneity. This effect is reminiscent of the fluidization observed experimentally when introducing molecular motors into soft materials. Interestingly, when the characteristic time τ_{μ}, used to define the mobility in the facilitation mechanism, matches the physical time t^{*} that characterizes the spontaneous cooperativity of the material, we observe a phase transition accompanied by structural aggregation of the active molecules. This transition is characterized by a sharp increase in fluidization and dynamic heterogeneity.
Collapse
Affiliation(s)
- Victor Teboul
- Laboratoire de Photonique d'Angers EA 4464, Université d'Angers, Physics Department, 2 Bd Lavoisier, 49045 Angers, France
| |
Collapse
|
6
|
van der Meer J, Degünther J, Seifert U. Time-Resolved Statistics of Snippets as General Framework for Model-Free Entropy Estimators. PHYSICAL REVIEW LETTERS 2023; 130:257101. [PMID: 37418719 DOI: 10.1103/physrevlett.130.257101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/20/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023]
Abstract
Irreversibility is commonly quantified by entropy production. An external observer can estimate it through measuring an observable that is antisymmetric under time reversal like a current. We introduce a general framework that allows us to infer a lower bound on entropy production through measuring the time-resolved statistics of events with any symmetry under time reversal, in particular, time-symmetric instantaneous events. We emphasize Markovianity as a property of certain events rather than of the full system and introduce an operationally accessible criterion for this weakened Markov property. Conceptually, the approach is based on snippets as particular sections of trajectories between two Markovian events, for which a generalized detailed balance relation is discussed.
Collapse
Affiliation(s)
- Jann van der Meer
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Julius Degünther
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
7
|
O'Byrne J. Nonequilibrium currents in stochastic field theories: A geometric insight. Phys Rev E 2023; 107:054105. [PMID: 37329107 DOI: 10.1103/physreve.107.054105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/03/2023] [Indexed: 06/18/2023]
Abstract
We introduce a formalism to study nonequilibrium steady-state probability currents in stochastic field theories. We show that generalizing the exterior derivative to functional spaces allows identification of the subspaces in which the system undergoes local rotations. In turn, this allows prediction of the counterparts in the real, physical space of these abstract probability currents. The results are presented for the case of the Active Model B undergoing motility-induced phase separation, which is known to be out of equilibrium but whose steady-state currents have not yet been observed, as well as for the Kardar-Parisi-Zhang equation. We locate and measure these currents and show that they manifest in real space as propagating modes localized in regions with nonvanishing gradients of the fields.
Collapse
Affiliation(s)
- J O'Byrne
- Université Paris-Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France and DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
8
|
Debets VE, Löwen H, Janssen LMC. Glassy Dynamics in Chiral Fluids. PHYSICAL REVIEW LETTERS 2023; 130:058201. [PMID: 36800471 DOI: 10.1103/physrevlett.130.058201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Chiral active matter is enjoying a rapid increase of interest, spurred by the rich variety of asymmetries that can be attained in, e.g., the shape or self-propulsion mechanism of active particles. Though this has already led to the observance of so-called chiral crystals, active chiral glasses remain largely unexplored. A possible reason for this could be the naive expectation that interactions dominate the glassy dynamics and the details of the active motion become increasingly less relevant. Here, we show that quite the opposite is true by studying the glassy dynamics of interacting chiral active Brownian particles. We demonstrate that when our chiral fluid is pushed to glassy conditions, it exhibits highly nontrivial dynamics, especially compared to a standard linear active fluid such as common active Brownian particles. Despite the added complexity, we are still able to present a full rationalization for all identified dynamical regimes. Most notably, we introduce a new "hammering" mechanism, unique to rapidly spinning particles in high-density conditions, that can fluidize a chiral active solid.
Collapse
Affiliation(s)
- Vincent E Debets
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Liesbeth M C Janssen
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| |
Collapse
|
9
|
Saw S, Costigliola L, Dyre JC. Configurational temperature in active matter. II. Quantifying the deviation from thermal equilibrium. Phys Rev E 2023; 107:024610. [PMID: 36932493 DOI: 10.1103/physreve.107.024610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
This paper proposes using the configurational temperature T_{conf} for quantifying how far an active-matter system is from thermal equilibrium. We measure this "distance" by the ratio of the systemic temperature T_{s} to T_{conf}, where T_{s} is the canonical-ensemble temperature for which the average potential energy is equal to that of the active-matter system. T_{conf} is "local" in the sense that it is the average of a function, which depends only on how the potential energy varies in the vicinity of a given configuration. In contrast, T_{s} is a global quantity. The quantity T_{s}/T_{conf} is straightforward to evaluate in a computer simulation; equilibrium simulations in conjunction with a single steady-state active-matter configuration are enough to determine T_{s}/T_{conf}. We validate the suggestion that T_{s}/T_{conf} quantifies the deviation from thermal equilibrium by data for the radial distribution function of the 3D Kob-Andersen and 2D Yukawa active-matter models with active Ornstein-Uhlenbeck and active Brownian Particle dynamics. Moreover, we show that T_{s}/T_{conf}, structure, and dynamics of the homogeneous phase are all approximately invariant along the motility-induced phase separation boundary in the phase diagram of the 2D Yukawa model. The measure T_{s}/T_{conf} is not limited to active matter and can be used for quantifying how far any system involving a potential-energy function, e.g., a driven Hamiltonian system, is from thermal equilibrium.
Collapse
Affiliation(s)
- Shibu Saw
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Lorenzo Costigliola
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
10
|
Saw S, Costigliola L, Dyre JC. Configurational temperature in active matter. I. Lines of invariant physics in the phase diagram of the Ornstein-Uhlenbeck model. Phys Rev E 2023; 107:024609. [PMID: 36932558 DOI: 10.1103/physreve.107.024609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
This paper shows that the configurational temperature of liquid-state theory, T_{conf}, defines an energy scale, which can be used for adjusting model parameters of active Ornstein-Uhlenbeck particle (AOUP) models in order to achieve approximately invariant structure and dynamics upon a density change. The required parameter changes are calculated from the variation of a single configuration's T_{conf} for a uniform scaling of all particle coordinates. The resulting equations are justified theoretically for models involving a potential-energy function with hidden scale invariance. The validity of the procedure is illustrated by computer simulations of the Kob-Andersen binary Lennard-Jones AOUP model, showing the existence of lines of approximate invariance of the reduced-unit radial distribution function and time-dependent mean-square displacement.
Collapse
Affiliation(s)
- Shibu Saw
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Lorenzo Costigliola
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
11
|
Debets VE, Janssen LMC. Active glassy dynamics is unaffected by the microscopic details of self-propulsion. J Chem Phys 2022; 157:224902. [DOI: 10.1063/5.0127569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent years have seen a rapid increase of interest in dense active materials, which, in the disordered state, share striking similarities with the conventional passive glass-forming matter. For such passive glassy materials, it is well established (at least in three dimensions) that the details of the microscopic dynamics, e.g., Newtonian or Brownian, do not influence the long-time glassy behavior. Here, we investigate whether this still holds true in the non-equilibrium active case by considering two simple and widely used active particle models, i.e., active Ornstein-Uhlenbeck particles (AOUPs) and active Brownian particles (ABPs). In particular, we seek to gain more insight into the role of the self-propulsion mechanism on the glassy dynamics by deriving a mode-coupling theory (MCT) for thermal AOUPs, which can be directly compared to a recently developed MCT for ABPs. Both theories explicitly take into account the active degrees of freedom. We solve the AOUP- and ABP-MCT equations in two dimensions and demonstrate that both models give almost identical results for the intermediate scattering function over a large variety of control parameters (packing fractions, active speeds, and persistence times). We also confirm this theoretical equivalence between the different self-propulsion mechanisms numerically via simulations of a polydisperse mixture of active quasi-hard spheres, thereby establishing that, at least for these model systems, the microscopic details of self-propulsion do not alter the active glassy behavior.
Collapse
Affiliation(s)
- Vincent E. Debets
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Liesbeth M. C. Janssen
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
12
|
Ghosh A, Spakowitz AJ. Statistical behavior of nonequilibrium and living biological systems subjected to active and thermal fluctuations. Phys Rev E 2022; 105:014415. [PMID: 35193230 DOI: 10.1103/physreve.105.014415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
We present a path-integral formulation of the motion of a particle subjected to fluctuating active and thermal forces. This general framework predicts the statistical behavior associated with the stochastic trajectories of the particle, accounting for all possible realizations of Brownian and active forces, over an arbitrary potential landscape. Temporal correlations in the active forces result in non-Markovian statistics, necessitating the inclusion of a fixed active-force value at specified times within the statistical treatment. We specialize our theory to that of exponentially correlated active forces for a particle in a harmonic potential. We find the exact results for the statistical distributions for the initial position of the particle, accounting for the impact of the correlated active forces at all times prior to the initial time. Our theory is then used to find the two-point distribution for the active Brownian particle, which governs the joint probability that a particle begins and ends at specified locations. Analyses of the active Brownian statistics demonstrate that the impact of active forces can be interpreted through a time-dependent temperature whose influence depends on the competition of timescales of the active-force correlation and the relaxation time of the particle in the harmonic potential. The general results presented in this work are transferable to a broad range of nonequilibrium systems with active and Brownian motion, and the time-dependent temperature serves as a governing principle to describe the competition of timescales associated with active forces and internal relaxation processes.
Collapse
Affiliation(s)
- Ashesh Ghosh
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Andrew J Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- Department of Materials Science, Stanford University, Stanford, California 94305, USA
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Biophysics Program, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
13
|
Debets VE, de Wit XM, Janssen LMC. Cage Length Controls the Nonmonotonic Dynamics of Active Glassy Matter. PHYSICAL REVIEW LETTERS 2021; 127:278002. [PMID: 35061437 DOI: 10.1103/physrevlett.127.278002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/18/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Dense active matter is gaining widespread interest due to its remarkable similarity with conventional glass-forming materials. However, active matter is inherently out of equilibrium and even simple models such as active Brownian particles (ABPs) and active Ornstein-Uhlenbeck particles (AOUPs) behave markedly differently from their passive counterparts. Controversially, this difference has been shown to manifest itself via either a speedup, slowdown, or nonmonotonic change of the glassy relaxation dynamics. Here we rationalize these seemingly contrasting views on the departure from equilibrium by identifying the ratio of the short-time length scale to the cage length, i.e., the length scale of local particle caging, as a vital and unifying control parameter for active glassy matter. In particular, we explore the glassy dynamics of both thermal and athermal ABPs and AOUPs upon increasing the persistence time. We find that for all studied systems there is an optimum of the dynamics; this optimum occurs when the cage length coincides with the corresponding short-time length scale of the system, which is either the persistence length for athermal systems or a combination of the persistence length and a diffusive length scale for thermal systems. This new insight, for which we also provide a simple physical argument, allows us to reconcile and explain the manifestly disparate departures from equilibrium reported in many previous studies of dense active materials.
Collapse
Affiliation(s)
- Vincent E Debets
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Xander M de Wit
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Liesbeth M C Janssen
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| |
Collapse
|
14
|
Arnoulx de Pirey T, Manacorda A, van Wijland F, Zamponi F. Active matter in infinite dimensions: Fokker-Planck equation and dynamical mean-field theory at low density. J Chem Phys 2021; 155:174106. [PMID: 34742220 DOI: 10.1063/5.0065893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the behavior of self-propelled particles in infinite space dimensions by comparing two powerful approaches in many-body dynamics: the Fokker-Planck equation and dynamical mean-field theory. The dynamics of the particles at low densities and infinite persistence time is solved in the steady state with both methods, thereby proving the consistency of the two approaches in a paradigmatic out-of-equilibrium system. We obtain the analytic expression for the pair distribution function and the effective self-propulsion to first-order in the density, confirming the results obtained in a previous paper [T. Arnoulx de Pirey et al., Phys. Rev. Lett. 123, 260602 (2019)] and extending them to the case of a non-monotonous interaction potential. Furthermore, we obtain the transient behavior of active hard spheres when relaxing from the equilibrium to the nonequilibrium steady state. Our results show how collective dynamics is affected by interactions to first-order in the density and point out future directions for further analytical and numerical solutions of this problem.
Collapse
Affiliation(s)
- Thibaut Arnoulx de Pirey
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| | - Alessandro Manacorda
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Frédéric van Wijland
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| | - Francesco Zamponi
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| |
Collapse
|
15
|
Ancona M, Bentivoglio A, Caraglio M, Gonnella G, Pelizzola A. Emergence of effective temperatures in an out-of-equilibrium model of biopolymer folding. Phys Rev E 2021; 103:062415. [PMID: 34271706 DOI: 10.1103/physreve.103.062415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/26/2021] [Indexed: 11/07/2022]
Abstract
We investigate the possibility of extending the notion of temperature in a stochastic model for the RNA or protein folding driven out of equilibrium. We simulate the dynamics of a small RNA hairpin subject to an external pulling force, which is time-dependent. First, we consider a fluctuation-dissipation relation (FDR) whereby we verify that various effective temperatures can be obtained for different observables, only when the slowest intrinsic relaxation timescale of the system regulates the dynamics of the system. Then, we introduce a different nonequilibrium temperature, which is defined from the rate of heat exchanged with a weakly interacting thermal bath. Notably, this "kinetic" temperature can be defined for any frequency of the external switching force. We also discuss and compare the behavior of these two emerging parameters, by discriminating the time-delayed nature of the FDR temperature from the instantaneous character of the kinetic temperature. The validity of our numerics are corroborated by a simple four-state Markov model which describes the long-time behavior of the RNA molecule.
Collapse
Affiliation(s)
- Marco Ancona
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | - Alessandro Bentivoglio
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | - Michele Caraglio
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Giuseppe Gonnella
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, 70126 Bari, Italy
| | - Alessandro Pelizzola
- Dipartimento Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.,INFN, Sezione di Torino, via Pietro Giuria 1, 10125 Torino, Italy
| |
Collapse
|
16
|
Shakerpoor A, Flenner E, Szamel G. The Einstein effective temperature can predict the tagged active particle density. J Chem Phys 2021; 154:184901. [PMID: 34241010 DOI: 10.1063/5.0049239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We derive a distribution function for the position of a tagged active particle in a slowly varying in space external potential, in a system of interacting active particles. The tagged particle distribution has the form of the Boltzmann distribution but with an effective temperature that replaces the temperature of the heat bath. We show that the effective temperature that enters the tagged particle distribution is the same as the effective temperature defined through the Einstein relation, i.e., it is equal to the ratio of the self-diffusion and tagged particle mobility coefficients. This result shows that this effective temperature, which is defined through a fluctuation-dissipation ratio, is relevant beyond the linear response regime. We verify our theoretical findings through computer simulations. Our theory fails when an additional large length scale appears in our active system. In the system we simulated, this length scale is associated with long-wavelength density fluctuations that emerge upon approaching motility-induced phase separation.
Collapse
Affiliation(s)
- Alireza Shakerpoor
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Elijah Flenner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Grzegorz Szamel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
17
|
Martin D, O'Byrne J, Cates ME, Fodor É, Nardini C, Tailleur J, van Wijland F. Statistical mechanics of active Ornstein-Uhlenbeck particles. Phys Rev E 2021; 103:032607. [PMID: 33862678 DOI: 10.1103/physreve.103.032607] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
We study the statistical properties of active Ornstein-Uhlenbeck particles (AOUPs). In this simplest of models, the Gaussian white noise of overdamped Brownian colloids is replaced by a Gaussian colored noise. This suffices to grant this system the hallmark properties of active matter, while still allowing for analytical progress. We study in detail the steady-state distribution of AOUPs in the small persistence time limit and for spatially varying activity. At the collective level, we show AOUPs to experience motility-induced phase separation both in the presence of pairwise forces or due to quorum-sensing interactions. We characterize both the instability mechanism leading to phase separation and the resulting phase coexistence. We probe how, in the stationary state, AOUPs depart from their thermal equilibrium limit by investigating the emergence of ratchet currents and entropy production. In the small persistence time limit, we show how fluctuation-dissipation relations are recovered. Finally, we discuss how the emerging properties of AOUPs can be characterized from the dynamics of their collective modes.
Collapse
Affiliation(s)
- David Martin
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS,F-75205 Paris, France
| | - Jérémy O'Byrne
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS,F-75205 Paris, France
| | - Michael E Cates
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Étienne Fodor
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg
| | - Cesare Nardini
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Service de Physique de l'État Condensé, CNRS UMR 3680, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Julien Tailleur
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS,F-75205 Paris, France
| | - Frédéric van Wijland
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS,F-75205 Paris, France
| |
Collapse
|
18
|
O'Byrne J, Tailleur J. Lamellar to Micellar Phases and Beyond: When Tactic Active Systems Admit Free Energy Functionals. PHYSICAL REVIEW LETTERS 2020; 125:208003. [PMID: 33258650 DOI: 10.1103/physrevlett.125.208003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
We consider microscopic models of active particles whose velocities, rotational diffusivities, and tumbling rates depend on the gradient of a local field that is either externally imposed or depends on all particle positions. Despite the fundamental differences between active and passive dynamics at the microscopic scale, we show that a large class of such tactic active systems admit fluctuating hydrodynamics equivalent to those of interacting Brownian colloids in equilibrium. We exploit this mapping to show how taxis may lead to the lamellar and micellar phases observed for soft repulsive colloids. In the context of chemotaxis, we show how the competition between chemoattractant and chemorepellent may lead to a bona fide equilibrium liquid-gas phase separation in which a loss of thermodynamic stability of the fluid signals the onset of a chemotactic collapse.
Collapse
Affiliation(s)
- J O'Byrne
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| | - J Tailleur
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| |
Collapse
|
19
|
Razin N. Entropy production of an active particle in a box. Phys Rev E 2020; 102:030103. [PMID: 33075964 DOI: 10.1103/physreve.102.030103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
A run-and-tumble particle in a one-dimensional box (infinite potential well) is studied. The steady state is analytically solved and analyzed, revealing the emergent length scale of the boundary layer where particles accumulate near the walls. The mesoscopic steady state entropy production rate of the system is derived from coupled Fokker-Planck equations with a linear reaction term, resulting in an exact analytic expression. The entropy production density is shown to peak at the walls. Additionally, the derivative of the entropy production rate peaks at a system size proportional to the length scale of the accumulation boundary layer, suggesting that the behavior of the entropy production rate and its derivatives as a function of the control parameter may signify a qualitative behavior change in the physics of active systems, such as phase transitions.
Collapse
Affiliation(s)
- Nitzan Razin
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|