1
|
Shenoy SA, Chaithanya K, Dayal P. Shear-induced dynamics of an active Belousov-Zhabotinsky droplet. SOFT MATTER 2025; 21:1957-1969. [PMID: 39967401 DOI: 10.1039/d4sm01464b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Controlled navigation of self-propelled active matter in complex biological environments has remained a significant challenge in engineering owing to a multitude of interactions that persist in the process. Active droplets, being some of the several synthetic active matters, have garnered significant attention owing to their ability to exhibit dynamic shape changes, self-sustained motion, interact with external stimuli such as flows, and mimic biological active matter. Here, we explore the dynamics of a self-propelled active droplet powered by the oscillatory Belousov-Zhabotinsky (BZ) reaction in the presence of a shear flow. We adapt a multicomponent lattice Boltzmann method (LBM) in conjunction with the phase-field model to simulate the droplet's interaction with the surrounding fluid. We unravel the collective effect of droplet deformation, reaction kinetics, and strength of the surrounding shear flow on droplet dynamics. Our findings depict that the shear flow disrupts the initial isotropic surface tension, and produces concentration nucleation spots in the droplet. The asymmetry thus generated produces Marangoni flow that ultimately propels the droplet. Our findings provide valuable insights into the mechanisms governing active droplet behavior and open new avenues for designing controllable synthetic active matter systems with potential applications in microfluidics, targeted delivery, and biomimetic technologies. In addition, our framework can potentially be integrated with the physics-informed machine learning framework to develop more efficient mesh-free methods.
Collapse
Affiliation(s)
- Shreyas A Shenoy
- Polymer Engineering Research Lab (PERL), Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, 382355, India.
| | - Kvs Chaithanya
- Polymer Engineering Research Lab (PERL), Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, 382355, India.
| | - Pratyush Dayal
- Polymer Engineering Research Lab (PERL), Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, 382355, India.
| |
Collapse
|
2
|
Castonguay AC, Kailasham R, Wentworth CM, Meredith CH, Khair AS, Zarzar LD. Gravitational settling of active droplets. Phys Rev E 2023; 107:024608. [PMID: 36932547 DOI: 10.1103/physreve.107.024608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The gravitational settling of oil droplets solubilizing in an aqueous micellar solution contained in a capillary channel is investigated. The motion of these active droplets reflects a competition between gravitational and Marangoni forces, the latter due to interfacial tension gradients generated by differences in filled-micelle concentrations along the oil-water interface. This competition is studied by varying the surfactant concentration, the density difference between the droplet and the continuous phase, and the viscosity of the continuous phase. The Marangoni force enhances the settling speed of an active droplet when compared to the Hadamard-Rybczynski prediction for a (surfactant free) droplet settling in Stokes flow. The Marangoni force can also induce lateral droplet motion, suggesting that the Marangoni and gravitational forces are not always aligned. The decorrelation rate (α) of the droplet motion, measured as the initial slope of the velocity autocorrelation and indicative of the extent to which the Marangoni and gravitational forces are aligned during settling, is examined as a function of the droplet size: correlated motion (small values of α) is observed at both small and large droplet radii, whereas significant decorrelation can occur between these limits. This behavior of active droplets settling in a capillary channel is in marked contrast to that observed in a dish, where the decorrelation rate increases with the droplet radius before saturating at large values of droplet radius. A simple relation for the crossover radius at which the maximal value of α occurs for an active settling droplet is proposed.
Collapse
Affiliation(s)
- Alexander C Castonguay
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - R Kailasham
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Ciera M Wentworth
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Caleb H Meredith
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Aditya S Khair
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Lauren D Zarzar
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
3
|
Wang F, Guo F, Wang Z, He H, Sun Y, Liang W, Yang B. Surface Charge Density Gradient Printing To Drive Droplet Transport: A Numerical Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13697-13706. [PMID: 36317786 DOI: 10.1021/acs.langmuir.2c01772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Traditional strategies, such as morphological or chemical gradients, struggle to realize the high-velocity and long-distance transport for droplets on a solid surface because of the pinning hydrodynamic equilibrium. Thus, there is a continuing challenge for practical technology to drive droplet transport over the last decades. The surface charge density (SCD) gradient printing method overcame the theoretical limit of traditional strategies and tackled this challenge [Nat. Mater. 2019, 18: 936], which utilized the asymmetric electric force to realize the high-velocity and long-distance droplet transport along a preprinted SCD gradient pathway. In the present work, by coupling the electrostatics and the hydrodynamics, we developed an unexplored numerical model for the water droplet transporting along the charged superhydrophobic surface. Subsequently, the effects of SCD gradients on the droplet transport were systematically discussed, and an optimized method for SCD gradient printing was proposed according to the numerical results. The present approach can provide early guidance for the SCD gradient printing to drive droplet transport on a solid surface.
Collapse
Affiliation(s)
- Fangxin Wang
- College of Architectural Science and Engineering, Yangzhou University, Yangzhou225127, P.R. China
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin150001, P.R. China
| | - Fuzheng Guo
- College of Architectural Science and Engineering, Yangzhou University, Yangzhou225127, P.R. China
| | - Zhenqing Wang
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin150001, P.R. China
| | - Hailing He
- Department of Chemical Engineering, Tsinghua University, Beijing100084, P.R. China
| | - Yun Sun
- College of Architectural Science and Engineering, Yangzhou University, Yangzhou225127, P.R. China
| | - Wenyan Liang
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin150001, P.R. China
| | - Bin Yang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai200092, P.R. China
| |
Collapse
|
4
|
We the Droplets: A Constitutional Approach to Active and Self-Propelled Emulsions. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Yucknovsky A, Rich BB, Gutkin S, Ramanthrikkovil Variyam A, Shabat D, Pokroy B, Amdursky N. Application of Super Photoacids in Controlling Dynamic Processes: Light-Triggering the Self-Propulsion of Oil Droplets. J Phys Chem B 2022; 126:6331-6337. [PMID: 35959566 DOI: 10.1021/acs.jpcb.2c04020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dynamic control of pH-responsive systems is at the heart of many natural and artificial processes. Here, we use photoacids, molecules that dissociate only in their excited state and transfer their proton to nearby proton acceptors, for the dynamic control of processes. A problem arises when there is a need to protonate highly acidic acceptors. We solve this problem using super photoacids that have an excited-state pKa of -8, thus enabling them to protonate very weak proton acceptors. The process that we target is the light-triggered self-propulsion of droplets, initiated by an excited-state proton transfer (ESPT) from a super photoacid donor to a surfactant acceptor situated on the surface of the droplet with a pKa of ∼0. We first confirm using steady-state and time-resolved spectroscopy that a super photoacid can undergo ESPT to the acidic surfactant, whereas a "regular" photoacid cannot. Next, we show self-propulsion of the droplet upon irradiating the solvated super photoacid. We further confirm the protonation of the surfactant on the surface of the droplet using transient surface tension measurements. Our system is the first example of the application of super photoacids to control dynamic processes and opens new possibilities in the field of light-triggered dynamic systems.
Collapse
Affiliation(s)
- Anna Yucknovsky
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Benjamin B Rich
- Department of Materials Science & Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Sara Gutkin
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | | | - Doron Shabat
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Boaz Pokroy
- Department of Materials Science & Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
6
|
|
7
|
Suematsu NJ, Mori Y, Amemiya T, Nakata S. Spontaneous Mode Switching of Self-Propelled Droplet Motion Induced by a Clock Reaction in the Belousov-Zhabotinsky Medium. J Phys Chem Lett 2021; 12:7526-7530. [PMID: 34346682 DOI: 10.1021/acs.jpclett.1c02079] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Interfacial chemical dynamics on a droplet generate various self-propelled motions. For example, ballistic and random motions arise depending on the physicochemical conditions inside the droplet and its environment. In this study, we focus on the relationship between oxidant concentrations in an aqueous droplet and its mode of self-propelled motion in an oil phase including surfactant. We demonstrated that the chemical conditions inside self-propelled aqueous droplets were changed systematically, indicating that random motion appeared at higher concentrations of oxidants, which were H2SO4 and BrO3-, and ballistic motion at lower concentrations. In addition, spontaneous mode switching from ballistic to random motion was successfully demonstrated by adding malonic acid, wherein the initially observed reduced state of the aqueous solution suddenly changed to the oxidized state. Although we only observed one-time transition and have not yet succeeded to realize alternation between ballistic (reduced state) and random motion (oxidized state), such spontaneous transitions are fundamental steps in realizing artificial cells and understanding the fundamental mechanisms of life-like behavior, such as bacterial chemotaxis originating from periodical run-and-tumble motion.
Collapse
Affiliation(s)
- Nobuhiko J Suematsu
- Graduate School of Advanced Mathematical Sciences, Meiji University, 4-21-1 Nakano, Tokyo 164-8525, Japan
- Meiji Institute of Advanced Study of Mathematical Sciences, Meiji University, 4-21-1 Nakano, Tokyo 164-8525, Japan
| | - Yoshihito Mori
- Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Takashi Amemiya
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Satoshi Nakata
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|