1
|
Scherrer S, Ramakrishna SN, Niggel V, Hsu CP, Style RW, Spencer ND, Isa L. Characterizing sliding and rolling contacts between single particles. Proc Natl Acad Sci U S A 2025; 122:e2411414122. [PMID: 40048270 PMCID: PMC11912374 DOI: 10.1073/pnas.2411414122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/15/2025] [Indexed: 03/19/2025] Open
Abstract
Contacts between particles in dense, sheared suspensions are believed to underpin much of their rheology. Roughness and adhesion are known to constrain the relative motion of particles, and thus globally affect the shear response, but an experimental description of how they microscopically influence the transmission of forces and relative displacements within contacts is lacking. Here, we show that an innovative colloidal-probe atomic force microscopy technique allows the simultaneous measurement of normal and tangential forces exchanged between tailored surfaces and microparticles while tracking their relative sliding and rolling, unlocking the direct measurement of coefficients of rolling friction, as well as of sliding friction. We demonstrate that, in the presence of sufficient traction, particles spontaneously roll, reducing dissipation and promoting longer-lasting contacts. Conversely, when rolling is prevented, friction is greatly enhanced for rough and adhesive surfaces, while smooth particles coated by polymer brushes maintain well-lubricated contacts. We find that surface roughness induces rolling due to load-dependent asperity interlocking, leading to large off-axis particle rotations. In contrast, smooth, adhesive surfaces promote rolling along the principal axis of motion. Our results offer direct values of friction coefficients for numerical studies and an interpretation of the onset of discontinuous shear thickening based on them, opening up ways to tailor rheology via contact engineering.
Collapse
Affiliation(s)
- Simon Scherrer
- Department of Materials, ETH Zürich, Zürich8093, Switzerland
| | | | - Vincent Niggel
- Department of Materials, ETH Zürich, Zürich8093, Switzerland
| | - Chiao-Peng Hsu
- Chair for Cellular Biophysics, Center for Functional Protein Assemblies, Center for Organoid Systems, Department of Bioscience, Technical University of Munich, Technical University of Munich School of Natural Sciences, Garching85748, Germany
| | - Robert W. Style
- Department of Materials, ETH Zürich, Zürich8093, Switzerland
| | | | - Lucio Isa
- Department of Materials, ETH Zürich, Zürich8093, Switzerland
| |
Collapse
|
2
|
Tang J, Wen X, Zhang Z, Wang Y. Universal power-law scaling in the packing structure of frictional granular materials. Phys Rev E 2025; 111:015420. [PMID: 39972737 DOI: 10.1103/physreve.111.015420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/03/2025] [Indexed: 02/21/2025]
Abstract
Friction-induced energy dissipation is one of the key factors contributing to the unique properties of granular materials, such as the preparation history dependence of the packing structure. However, it remains unclear whether or not more realistic systems that involve two or more types of friction possess unique properties distinct from those that are frictionless or with a single type of friction. Here, we use numerical simulations to investigate the packing structure of binary mixtures of particles with particle type-dependent friction coefficient. Taking single-component systems as reference, we use an effective friction coefficient μ_{e} to represent the overall frictional strength in granular systems prepared via different protocols. Our results demonstrate that μ_{e} exhibits a power-law dependence on the individual friction coefficients. Furthermore, we propose models that accurately predict the packing structure of frictional particle systems across a range of compositions, size ratios, and preparation protocols.
Collapse
Affiliation(s)
- Jiajun Tang
- Chengdu University of Technology, Department of Physics, Chengdu 610059, China
| | - Xiaohui Wen
- Chengdu University of Technology, Department of Physics, Chengdu 610059, China
| | - Zhen Zhang
- Chengdu University of Technology, Department of Physics, Chengdu 610059, China
| | - Yujie Wang
- Chengdu University of Technology, Department of Physics, Chengdu 610059, China
- Chengdu University of Technology, State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu 610059, China
- Shanghai Jiao Tong University, School of Physics and Astronomy, Shanghai 200240, China
| |
Collapse
|
3
|
Wen Y, Zhang Y. Fabric-based jamming phase diagram for frictional granular materials. SOFT MATTER 2024; 20:3175-3190. [PMID: 38526425 DOI: 10.1039/d3sm01277h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
A jamming phase diagram maps the phase states of granular materials to their intensive properties such as shear stress and density (or packing fraction). We investigate how different phases in a jamming phase diagram of granular materials are related to their fabric structure via three-dimensional discrete element method simulations. Constant-volume quasi-static simple shear tests ensuring uniform shear strain field are conducted on bi-disperse spherical frictional particles. Specimens with different initial solid fractions are sheared until reaching steady state at a large shear strain (200%). The jamming threshold in terms of stress, non-rattler fraction, and coordination numbers (Z's) of different contact networks is discussed. The evolution of fabric anisotropy (F) of each contact network during shearing is also examined. By plotting the fabric data in the F-Z space, a unique critical fabric surface (CFS) becomes apparent across all specimens, irrespective of their initial phase states. Through the correlation of this CFS with fabric signals corresponding to jamming transitions, we introduce a novel jamming phase diagram in the fabric F-Z space, offering a convenient approach to distinguish the various phases of granular materials solely through the direct observation of geometrical arrangements of particles. This jamming phase diagram underscores the importance of the microstructure underlying the conventional jamming phenomenon and introduces a novel standpoint for interpreting the phase transitions of granular materials that have been exposed to processes such as compaction, shearing, and other complex loading histories.
Collapse
Affiliation(s)
- Yuxuan Wen
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO, USA.
| | - Yida Zhang
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
4
|
Clemmer JT, Monti JM, Lechman JB. A soft departure from jamming: the compaction of deformable granular matter under high pressures. SOFT MATTER 2024; 20:1702-1718. [PMID: 38284215 DOI: 10.1039/d3sm01373a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The high-pressure compaction of three dimensional granular packings is simulated using a bonded particle model (BPM) to capture linear elastic deformation. In the model, grains are represented by a collection of point particles connected by bonds. A simple multibody interaction is introduced to control Poisson's ratio and the arrangement of particles on the surface of a grain is varied to model both high- and low-frictional grains. At low pressures, the growth in packing fraction and coordination number follow the expected behavior near jamming and exhibit friction dependence. As the pressure increases, deviations from the low-pressure power-law scaling emerge after the packing fraction grows by approximately 0.1 and results from simulations with different friction coefficients converge. These results are compared to predictions from traditional discrete element method simulations which, depending on the definition of packing fraction and coordination number, may only differ by a factor of two. As grains deform under compaction, the average volumetric strain and asphericity, a measure of the change in the shape of grains, are found to grow as power laws and depend heavily on the Poisson's ratio of the constituent solid. Larger Poisson's ratios are associated with less volumetric strain and more asphericity and the apparent power-law exponent of the asphericity may vary. The elastic properties of the packed grains are also calculated as a function of packing fraction. In particular, we find the Poisson's ratio near jamming is 1/2 but decreases to around 1/4 before rising again as systems densify.
Collapse
Affiliation(s)
- Joel T Clemmer
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.
| | - Joseph M Monti
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.
| | - Jeremy B Lechman
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.
| |
Collapse
|
5
|
Tang J, Wen X, Zhang Z, Wang D, Huang X, Wang Y. Influence of friction on the packing efficiency and short-to-intermediate range structure of hard-sphere systems. J Chem Phys 2023; 159:194901. [PMID: 37966007 DOI: 10.1063/5.0175513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Using particle-resolved computer simulations, we investigate the effect of friction on the packing structure of hard-sphere mixtures with two kinds of particles under external compression. We first show that increasing friction between the particles results in a more disordered and less efficient packing of the local structure on the nearest neighbor scale. It is also found that standard two-point correlation functions, i.e., radial distribution function and static structure factor, show basically no detectable changes beyond short-range distances upon varying inter-particle friction. Further analysis of the structure using a four-point correlation method reveals that these systems have on the intermediate-range scale a three-dimensional structure with an icosahedral/dodecahedral symmetry that exhibits a pronounced dependence on friction: small friction gives rise to an orientational order that extends to larger distances. Our results also demonstrate that composition plays a role in that the degree of structural order and the structural correlation length are mainly affected by the friction coefficients associated with the more abundant species.
Collapse
Affiliation(s)
- Jiajun Tang
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| | - Xiaohui Wen
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| | - Zhen Zhang
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| | - Deyin Wang
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
- School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Xinbiao Huang
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| | - Yujie Wang
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Monti JM, Srivastava I, Silbert LE, Lechman JB, Grest GS. Fractal dimensions of jammed packings with power-law particle size distributions in two and three dimensions. Phys Rev E 2023; 108:L042902. [PMID: 37978630 DOI: 10.1103/physreve.108.l042902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/19/2023] [Indexed: 11/19/2023]
Abstract
Static structure factors are computed for large-scale, mechanically stable, jammed packings of frictionless spheres (three dimensions) and disks (two dimensions) with broad, power-law size dispersity characterized by the exponent -β. The static structure factor exhibits diverging power-law behavior for small wave numbers, allowing us to identify a structural fractal dimension d_{f}. In three dimensions, d_{f}≈2.0 for 2.5≤β≤3.8, such that each of the structure factors can be collapsed onto a universal curve. In two dimensions, we instead find 1.0≲d_{f}≲1.34 for 2.1≤β≤2.9. Furthermore, we show that the fractal behavior persists when rattler particles are removed, indicating that the long-wavelength structural properties of the packings are controlled by the large particle backbone conferring mechanical rigidity to the system. A numerical scheme for computing structure factors for triclinic unit cells is presented and employed to analyze the jammed packings.
Collapse
Affiliation(s)
- Joseph M Monti
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Ishan Srivastava
- Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Leonardo E Silbert
- School of Math, Science, and Engineering, Central New Mexico Community College, Albuquerque, New Mexico 87106, USA
| | - Jeremy B Lechman
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Gary S Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| |
Collapse
|
7
|
Singh A, Saitoh K. Scaling relationships between viscosity and diffusivity in shear-thickening suspensions. SOFT MATTER 2023; 19:6631-6640. [PMID: 37599580 DOI: 10.1039/d3sm00510k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Dense suspensions often exhibit a dramatic response to large external deformation. The recent body of work has related this behavior to transition from an unconstrained lubricated state to a constrained frictional state. Here, we use numerical simulations to study the flow behavior and shear-induced diffusion of frictional non-Brownian spheres in two dimensions under simple shear flow. We first show that both viscosity η and diffusivity D/ of the particles increase under characteristic shear stress, which is associated with lubrication to frictional transition. Subsequently, we propose a one-to-one relationship between viscosity and diffusivity using the length scale ξ associated with the size of collective motions (rigid clusters) of the particles. We demonstrate that η and D/ are controlled by ξ in two distinct flow regimes, i.e. in the frictionless and frictional states, where the one-to-one relationship is described as a crossover from D/ ∼ η (frictionless) to η1/3 (frictional). We also confirm that the proposed power laws are insensitive to the interparticle friction and system size.
Collapse
Affiliation(s)
- Abhinendra Singh
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Kuniyasu Saitoh
- Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| |
Collapse
|
8
|
Jiang Y, Seto R. Colloidal gelation with non-sticky particles. Nat Commun 2023; 14:2773. [PMID: 37188701 DOI: 10.1038/s41467-023-38461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
Colloidal gels are widely applied in industry due to their rheological character-no flow takes place below the yield stress. Such property enables gels to maintain uniform distribution in practical formulations; otherwise, solid components may quickly sediment without the support of gel matrix. Compared with pure gels of sticky colloids, therefore, the composites of gel and non-sticky inclusions are more commonly encountered in reality. Through numerical simulations, we investigate the gelation process in such binary composites. We find that the non-sticky particles not only confine gelation in the form of an effective volume fraction, but also introduce another lengthscale that competes with the size of growing clusters in gel. The ratio of two key lengthscales in general controls the two effects. Using different gel models, we verify such a scenario within a wide range of parameter space, suggesting a potential universality in all classes of colloidal composites.
Collapse
Affiliation(s)
- Yujie Jiang
- Wenzhou Key Laboratory of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, Zhejiang, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Ryohei Seto
- Wenzhou Key Laboratory of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), 325000, Wenzhou, Zhejiang, China.
- Graduate School of Information Science, University of Hyogo, 650-0047, Kobe, Hyogo, Japan.
| |
Collapse
|
9
|
Nan K, Hoy RS. Ultraslow Settling Kinetics of Frictional Cohesive Powders. PHYSICAL REVIEW LETTERS 2023; 130:166102. [PMID: 37154652 DOI: 10.1103/physrevlett.130.166102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
Using discrete element method simulations, we show that the settling of frictional cohesive grains under ramped-pressure compression exhibits strong history dependence and slow dynamics that are not present for grains that lack either cohesion or friction. Systems prepared by beginning with a dilute state and then ramping the pressure to a small positive value P_{final} over a time τ_{ramp} settle at packing fractions given by an inverse-logarithmic rate law, ϕ_{settled}(τ_{ramp})=ϕ_{settled}(∞)+A/[1+Bln(1+τ_{ramp}/τ_{slow})]. This law is analogous to the one obtained from classical tapping experiments on noncohesive grains, but crucially different in that τ_{slow} is set by the slow dynamics of structural void stabilization rather than the faster dynamics of bulk densification. We formulate a kinetic free-void-volume theory that predicts this ϕ_{settled}(τ_{ramp}), with ϕ_{settled}(∞)=ϕ_{ALP} and A=ϕ_{settled}(0)-ϕ_{ALP}, where ϕ_{ALP}≡.135 is the "adhesive loose packing" fraction found by Liu et al. [Equation of state for random sphere packings with arbitrary adhesion and friction, Soft Matter 13, 421 (2017)SMOABF1744-683X10.1039/C6SM02216B].
Collapse
Affiliation(s)
- Kai Nan
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Robert S Hoy
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
10
|
Monti JM, Clemmer JT, Srivastava I, Silbert LE, Grest GS, Lechman JB. Large-scale frictionless jamming with power-law particle size distributions. Phys Rev E 2022; 106:034901. [PMID: 36266786 DOI: 10.1103/physreve.106.034901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
Due to significant computational expense, discrete element method simulations of jammed packings of size-dispersed spheres with size ratios greater than 1:10 have remained elusive, limiting the correspondence between simulations and real-world granular materials with large size dispersity. Invoking a recently developed neighbor binning algorithm, we generate mechanically stable jammed packings of frictionless spheres with power-law size distributions containing up to nearly 4 000 000 particles with size ratios up to 1:100. By systematically varying the width and exponent of the underlying power laws, we analyze the role of particle size distributions on the structure of jammed packings. The densest packings are obtained for size distributions that balance the relative abundance of large-large and small-small particle contacts. Although the proportion of rattler particles and mean coordination number strongly depend on the size distribution, the mean coordination of nonrattler particles attains the frictionless isostatic value of six in all cases. The size distribution of nonrattler particles that participate in the load-bearing network exhibits no dependence on the width of the total particle size distribution beyond a critical particle size for low-magnitude exponent power laws. This signifies that only particles with sizes greater than the critical particle size contribute to the mechanical stability. However, for high-magnitude exponent power laws, all particle sizes participate in the mechanical stability of the packing.
Collapse
Affiliation(s)
- Joseph M Monti
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Joel T Clemmer
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Ishan Srivastava
- Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Leonardo E Silbert
- School of Math, Science, and Engineering, Central New Mexico Community College, Albuquerque, New Mexico 87106, USA
| | - Gary S Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Jeremy B Lechman
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| |
Collapse
|
11
|
Jimidar ISM, Sotthewes K, Gardeniers H, Desmet G, van der Meer D. Self-organization of agitated microspheres on various substrates. SOFT MATTER 2022; 18:3660-3677. [PMID: 35485633 PMCID: PMC9116155 DOI: 10.1039/d2sm00432a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 05/30/2023]
Abstract
The vibration dynamics of relatively large granular grains is extensively treated in the literature, but comparable studies on the self-assembly of smaller agitated beads are lacking. In this work, we investigate how the particle properties and the properties of the underlying substrate surface affect the dynamics and self-organization of horizontally agitated monodisperse microspheres with diameters between 3 and 10 μm. Upon agitation, the agglomerated hydrophilic silica particles locally leave traces of particle monolayers as they move across the flat uncoated and fluorocarbon-coated silicon substrates. However, on the micromachined silicon tray with relatively large surface roughness, the agitated silica agglomerates form segregated bands reminiscent of earlier studies on granular suspensions or Faraday heaps. On the other hand, the less agglomerated hydrophobic polystyrene particles form densely occupied monolayer arrangements regardless of the underlying substrate. We explain the observations by considering the relevant adhesion and friction forces between particles and underlying substrates as well as those among the particles themselves. Interestingly, for both types of microspheres, large areas of the fluorocarbon-coated substrates are covered with densely occupied particle monolayers. By qualitatively examining the morphology of the self-organized particle monolayers using the Voronoi approach, it is understood that these monolayers are highly disordered, i.e., multiple symmetries coexist in the self-organized monolayers. However, more structured symmetries are identified in the monolayers of the agitated polystyrene microspheres on all the substrates, albeit not all precisely positioned on a hexagonal lattice. On the other hand, both the silica and polystyrene monolayers on the bare silicon substrates transition into less disordered structures as time progresses. Using Kelvin probe force microscopy measurements, we show that due to the tribocharging phenomenon, the formation of particle monolayers is promoted on the fluorocarbon surface, i.e., a local electrostatic attraction exists between the particle and the substrate.
Collapse
Affiliation(s)
- Ignaas S M Jimidar
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
- Mesoscale Chemical Systems group, MESA+ Institute and Faculty of Science and Technology, University of Twente, P. O. Box 217, 7500AE Enschede, The Netherlands
| | - Kai Sotthewes
- Physics of Interfaces and Nanomaterials group, MESA+ Institute and Faculty of Science and Technology, University of Twente, P. O. Box 217, 7500AE Enschede, The Netherlands
| | - Han Gardeniers
- Mesoscale Chemical Systems group, MESA+ Institute and Faculty of Science and Technology, University of Twente, P. O. Box 217, 7500AE Enschede, The Netherlands
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Devaraj van der Meer
- Physics of Fluids group, Max Plank Center Twente for Complex Fluid Dynamics, J. M. Burgers Centre for Fluid Dynamics, MESA+ Institute and Faculty of Science and Technology, University of Twente, P. O. Box 217, The Netherlands
| |
Collapse
|
12
|
Sultan NH, Karimi K, Davidsen J. Sheared granular matter and the empirical relations of seismicity. Phys Rev E 2022; 105:024901. [PMID: 35291058 DOI: 10.1103/physreve.105.024901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The frictional instability associated with earthquake initiation and earthquake dynamics is believed to be mainly controlled by the dynamics of fragmented rocks within the fault gauge. Principal features of the emerging seismicity (e.g., intermittent dynamics and broad time and/or energy scales) have been replicated by simple experimental setups, which involve a slowly driven slider on top of granular matter, for example. Yet these setups are often physically limited and might not allow one to determine the underlying nature of specific features and, hence, the universality and generality of the experimental observations. Here, we address this challenge by a numerical study of a spring-slider experiment based on two-dimensional discrete element method simulations, which allows us to control the properties of the granular matter and of the surface of the slider, for example. Upon quasistatic loading, stick-slip-type behavior emerges which is contrasted by a stable sliding regime at finite driving rates, in agreement with experimental observations. Across large parameter ranges for damping, interparticle friction, particle polydispersity, etc., the earthquake-like dynamics associated with the former regime results in several robust scale-free statistical features also observed in experiments. At first sight, these closely resemble the main empirical relations of tectonic seismicity at geological scales. This includes the Gutenberg-Richter distribution of event sizes, the Omori-Utsu-type decay of aftershock rates, as well as the aftershock productivity relation and broad recurrence time distributions. Yet, we show that the correlations associated with tectonic aftershocks are absent such that the origin of the Omori-Utsu relation, the aftershock productivity relation, and Båth's relation in the simulations is fundamentally different from the case of tectonic seismicity. This, we believe, is mainly due to a lack of macroscale relaxation processes that are closely tied to the generation of real aftershocks. We argue that the same is true for previous laboratory experiments.
Collapse
Affiliation(s)
- Nauman Hafeez Sultan
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Kamran Karimi
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Jörn Davidsen
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
13
|
Srivastava I, Silbert LE, Lechman JB, Grest GS. Flow and arrest in stressed granular materials. SOFT MATTER 2022; 18:735-743. [PMID: 34935823 DOI: 10.1039/d1sm01344k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Flowing granular materials often abruptly arrest if not driven by sufficient applied stresses. Such abrupt cessation of motion can be economically expensive in industrial materials handling and processing, and is significantly consequential in intermittent geophysical phenomena such as landslides and earthquakes. Using discrete element simulations, we calculate states of steady flow and arrest for granular materials under the conditions of constant applied pressure and shear stress, which are also most relevant in practice. Here the material can dilate or compact, and flow or arrest, in response to the applied stress. Our simulations highlight that under external stress, the intrinsic response of granular materials is characterized by uniquely-defined steady states of flow or arrest, which are highly sensitive to interparticle friction. While the flowing states can be equivalently characterized by volume fraction, coordination number or internal stress ratio, to characterize the states of shear arrest, one needs to also consider the structural anisotropy in the contact network. We highlight the role of dilation in the flow-arrest transition, and discuss our findings in the context of rheological transitions in granular materials.
Collapse
Affiliation(s)
- Ishan Srivastava
- Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Leonardo E Silbert
- School of Math, Science, and Engineering, Central New Mexico Community College, Albuquerque, NM 87106, USA
| | | | - Gary S Grest
- Sandia National Laboratories, Albuquerque, NM 87185, USA
| |
Collapse
|
14
|
Clemmer JT, Srivastava I, Grest GS, Lechman JB. Shear Is Not Always Simple: Rate-Dependent Effects of Flow Type on Granular Rheology. PHYSICAL REVIEW LETTERS 2021; 127:268003. [PMID: 35029501 DOI: 10.1103/physrevlett.127.268003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/08/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Despite there being an infinite variety of types of flow, most rheological studies focus on a single type such as simple shear. Using discrete element simulations, we explore bulk granular systems in a wide range of flow types at large strains and characterize invariants of the stress tensor for different inertial numbers and interparticle friction coefficients. We identify a strong dependence on the type of flow, which grows with increasing inertial number or friction. Standard models of yielding, repurposed to describe the dependence of the stress on flow type in steady-state flow and at finite rates, are compared with data.
Collapse
Affiliation(s)
- Joel T Clemmer
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Ishan Srivastava
- Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Gary S Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Jeremy B Lechman
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| |
Collapse
|
15
|
Kozlowski R, Zheng H, Daniels KE, Socolar JES. Stress propagation in locally loaded packings of disks and pentagons. SOFT MATTER 2021; 17:10120-10127. [PMID: 34726678 DOI: 10.1039/d1sm01137e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The mechanical strength and flow of granular materials can depend strongly on the shapes of individual grains. We report quantitative results obtained from photoelasticimetry experiments on locally loaded, quasi-two-dimensional granular packings of either disks or pentagons exhibiting stick-slip dynamics. Packings of pentagons resist the intruder at significantly lower packing fractions than packings of disks, transmitting stresses from the intruder to the boundaries over a smaller spatial extent. Moreover, packings of pentagons feature significantly fewer back-bending force chains than packings of disks. Data obtained on the forward spatial extent of stresses and back-bending force chains collapse when the packing fraction is rescaled according to the packing fraction of steady state open channel formation, though data on intruder forces and dynamics do not collapse. We comment on the influence of system size on these findings and highlight connections with the dynamics of the disks and pentagons during slip events.
Collapse
Affiliation(s)
- Ryan Kozlowski
- Department of Physics, Duke University, Durham, North Carolina 27708, USA.
| | - Hu Zheng
- Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Karen E Daniels
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Joshua E S Socolar
- Department of Physics, Duke University, Durham, North Carolina 27708, USA.
| |
Collapse
|
16
|
Li C, Gan J, Pinson D, Yu A, Zhou Z. Dynamic analysis of poured packing process of ellipsoidal particles. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|