1
|
Dos Santos MAF, Menon L, Anteneodo C. Efficiency of random search with space-dependent diffusivity. Phys Rev E 2022; 106:044113. [PMID: 36397526 DOI: 10.1103/physreve.106.044113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
We address the problem of random search for a target in an environment with a space-dependent diffusion coefficient D(x). Considering a general form of the diffusion differential operator that includes Itô, Stratonovich, and Hänggi-Klimontovich interpretations of the associated stochastic process, we obtain and analyze the first-passage-time distribution and use it to compute the search efficiency E=〈1/t〉. For the paradigmatic power-law diffusion coefficient D(x)=D_{0}|x|^{α}, where x is the distance from the target and α<2, we show the impact of the different interpretations. For the Stratonovich framework, we obtain a closed-form expression for E, valid for arbitrary diffusion coefficient D(x). This result depends only on the distribution of diffusivity values and not on its spatial organization. Furthermore, the analytical expression predicts that a heterogeneous diffusivity profile leads to a lower efficiency than the homogeneous one with the same average level within the space between the target and the searcher initial position, but this efficiency can be exceeded for other interpretations.
Collapse
Affiliation(s)
- M A F Dos Santos
- Department of Physics, PUC-Rio, Rua Marquês de São Vicente 225, 22451-900 Rio de Janeiro, Brazil
| | - L Menon
- Department of Physics, PUC-Rio, Rua Marquês de São Vicente 225, 22451-900 Rio de Janeiro, Brazil
| | - C Anteneodo
- Department of Physics, PUC-Rio, Rua Marquês de São Vicente 225, 22451-900 Rio de Janeiro, Brazil
- Institute of Science and Technology for Complex Systems, INCT-SC, Brazil
| |
Collapse
|
2
|
Stojkoski V, Sandev T, Kocarev L, Pal A. Geometric Brownian motion under stochastic resetting: A stationary yet nonergodic process. Phys Rev E 2021; 104:014121. [PMID: 34412255 DOI: 10.1103/physreve.104.014121] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/16/2021] [Indexed: 01/19/2023]
Abstract
We study the effects of stochastic resetting on geometric Brownian motion with drift (GBM), a canonical stochastic multiplicative process for nonstationary and nonergodic dynamics. Resetting is a sudden interruption of a process, which consecutively renews its dynamics. We show that, although resetting renders GBM stationary, the resulting process remains nonergodic. Quite surprisingly, the effect of resetting is pivotal in manifesting the nonergodic behavior. In particular, we observe three different long-time regimes: a quenched state, an unstable state, and a stable annealed state depending on the resetting strength. Notably, in the last regime, the system is self-averaging and thus the sample average will always mimic ergodic behavior establishing a stand-alone feature for GBM under resetting. Crucially, the above-mentioned regimes are well separated by a self-averaging time period which can be minimized by an optimal resetting rate. Our results can be useful to interpret data emanating from stock market collapse or reconstitution of investment portfolios.
Collapse
Affiliation(s)
- Viktor Stojkoski
- Faculty of Economics, Ss. Cyril and Methodius University, 1000 Skopje, Macedonia.,Research Center for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia
| | - Trifce Sandev
- Research Center for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia.,Institute of Physics and Astronomy, University of Potsdam, D-14776 Potsdam-Golm, Germany.,Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 3, 1000 Skopje, Macedonia
| | - Ljupco Kocarev
- Research Center for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia.,Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, P.O. Box 393, 1000 Skopje, Macedonia
| | - Arnab Pal
- School of Chemistry, The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Abstract
This review addresses issues of various drift–diffusion and inhomogeneous advection problems with and without resetting on comblike structures. Both a Brownian diffusion search with drift and an inhomogeneous advection search on the comb structures are analyzed. The analytical results are verified by numerical simulations in terms of coupled Langevin equations for the comb structure. The subordination approach is one of the main technical methods used here, and we demonstrated how it can be effective in the study of various random search problems with and without resetting.
Collapse
|
4
|
Generalised Geometric Brownian Motion: Theory and Applications to Option Pricing. ENTROPY 2020; 22:e22121432. [PMID: 33353060 PMCID: PMC7766185 DOI: 10.3390/e22121432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
Classical option pricing schemes assume that the value of a financial asset follows a geometric Brownian motion (GBM). However, a growing body of studies suggest that a simple GBM trajectory is not an adequate representation for asset dynamics, due to irregularities found when comparing its properties with empirical distributions. As a solution, we investigate a generalisation of GBM where the introduction of a memory kernel critically determines the behaviour of the stochastic process. We find the general expressions for the moments, log-moments, and the expectation of the periodic log returns, and then obtain the corresponding probability density functions using the subordination approach. Particularly, we consider subdiffusive GBM (sGBM), tempered sGBM, a mix of GBM and sGBM, and a mix of sGBMs. We utilise the resulting generalised GBM (gGBM) in order to examine the empirical performance of a selected group of kernels in the pricing of European call options. Our results indicate that the performance of a kernel ultimately depends on the maturity of the option and its moneyness.
Collapse
|