1
|
Niu Z, Wu Y, Wang Y, Rong X, Du J. Experimental Investigation of Coherent Ergotropy in a Single Spin System. PHYSICAL REVIEW LETTERS 2024; 133:180401. [PMID: 39547181 DOI: 10.1103/physrevlett.133.180401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 11/17/2024]
Abstract
Ergotropy is defined as the maximum amount of work that can be extracted through a unitary cyclic evolution. It plays a crucial role in assessing the work capacity of a quantum system. Recently, the significance of quantum coherence in work extraction has been theoretically identified, revealing that quantum states with more coherence possess more ergotropy compared to their dephased counterparts. However, an experimental study of the coherent ergotropy remains absent. Here, we report an experimental investigation of the coherent ergotropy in a single spin system. Based on the method of measuring ergotropy with an ancilla qubit, both the coherent and incoherent components of the ergotropy for the nonequilibrium state were successfully extracted. The increase in ergotropy induced by the increase in the coherence of the system was observed by varying the coherence of the state. Our work reveals the interplay between quantum thermodynamics and quantum information theory, future investigations could further explore the role other quantum attributes play in thermodynamic protocols.
Collapse
Affiliation(s)
| | | | - Yunhan Wang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- Anhui Province Key Laboratory of Scientific Instrument Development and Application, University of Science and Technology of China, Hefei 230026, China
| | - Xing Rong
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- Anhui Province Key Laboratory of Scientific Instrument Development and Application, University of Science and Technology of China, Hefei 230026, China
| | - Jiangfeng Du
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- Anhui Province Key Laboratory of Scientific Instrument Development and Application, University of Science and Technology of China, Hefei 230026, China
- Institute of Quantum Sensing and School of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Hadipour M, Haseli S. Work extraction from quantum coherence in non-equilibrium environment. Sci Rep 2024; 14:24876. [PMID: 39438638 PMCID: PMC11496670 DOI: 10.1038/s41598-024-75478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Ergotropy, which represents the maximum amount of work that can be extracted from a quantum system, has become a focal point of interest in the fields of quantum thermodynamics and information processing. In practical scenarios, the interaction of quantum systems with their surrounding environment is unavoidable. Recent studies have increasingly focused on analyzing open quantum systems affected by non-stationary environmental fluctuations due to their significant impact on various physical scenarios. While much research has concentrated on work extraction from these systems, it often assumes that the environmental degrees of freedom are substantial and that the environment is effectively in equilibrium. This has led us to explore work extraction from quantum systems under non-stationary environmental conditions. In this work, the dynamics of ergotropy will be investigated in a non-equilibrium environment for both Markovian and non-Markovian regime. In this study, both the coherent and incoherent parts of the ergotropy will be considered. It will be shown that for a non-equilibrium environment, the extraction of work is more efficient compared to when the environment is in equilibrium.
Collapse
Affiliation(s)
- Maryam Hadipour
- Faculty of Physics, Urmia University of Technology, Urmia, Iran
| | - Soroush Haseli
- Faculty of Physics, Urmia University of Technology, Urmia, Iran.
| |
Collapse
|
3
|
Boettcher V, Hartmann R, Beyer K, Strunz WT. Dynamics of a strongly coupled quantum heat engine-Computing bath observables from the hierarchy of pure states. J Chem Phys 2024; 160:094108. [PMID: 38436445 DOI: 10.1063/5.0192075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
We present a fully quantum dynamical treatment of a quantum heat engine and its baths based on the Hierarchy of Pure States (HOPS), an exact and general method for open quantum system dynamics. We show how the change of the bath energy and the interaction energy can be determined within HOPS for arbitrary coupling strength and smooth time dependence of the modulation protocol. The dynamics of all energetic contributions during the operation can be carefully examined both in its initial transient phase and, also later, in its periodic steady state. A quantum Otto engine with a qubit as an inherently nonlinear work medium is studied in a regime where the energy associated with the interaction Hamiltonian plays an important role for the global energy balance and, thus, must not be neglected when calculating its power and efficiency. We confirm that the work required to drive the coupling with the baths sensitively depends on the speed of the modulation protocol. Remarkably, departing from the conventional scheme of well-separated phases by allowing for temporal overlap, we discover that one can even gain energy from the modulation of bath interactions. We visualize these various work contributions using the analog of state change diagrams of thermodynamic cycles. We offer a concise, full presentation of HOPS with its extension to bath observables, as it serves as a universal tool for the numerically exact description of general quantum dynamical (thermodynamic) scenarios far from the weak-coupling limit.
Collapse
Affiliation(s)
- Valentin Boettcher
- Institute of Theoretical Physics, TUD Dresden University of Technology, 01062 Dresden, Germany
- Department of Physics, McGill University, Montréal, Québec H3A 2T8, Canada
| | - Richard Hartmann
- Institute of Theoretical Physics, TUD Dresden University of Technology, 01062 Dresden, Germany
| | - Konstantin Beyer
- Institute of Theoretical Physics, TUD Dresden University of Technology, 01062 Dresden, Germany
- Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | - Walter T Strunz
- Institute of Theoretical Physics, TUD Dresden University of Technology, 01062 Dresden, Germany
| |
Collapse
|
4
|
Song WL, Liu HB, Zhou B, Yang WL, An JH. Remote Charging and Degradation Suppression for the Quantum Battery. PHYSICAL REVIEW LETTERS 2024; 132:090401. [PMID: 38489615 DOI: 10.1103/physrevlett.132.090401] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/22/2024] [Indexed: 03/17/2024]
Abstract
The quantum battery (QB) makes use of quantum effects to store and supply energy, which may outperform its classical counterpart. However, there are two challenges in this field. One is that the environment-induced decoherence causes the energy loss and aging of the QB, the other is that the decreasing of the charger-QB coupling strength with increasing their distance makes the charging of the QB become inefficient. Here, we propose a QB scheme to realize a remote charging via coupling the QB and the charger to a rectangular hollow metal waveguide. It is found that an ideal charging is realized as long as two bound states are formed in the energy spectrum of the total system consisting of the QB, the charger, and the electromagnetic environment in the waveguide. Using the constructive role of the decoherence, our QB is immune to the aging. Additionally, without resorting to the direct charger-QB interaction, our scheme works in a way of long-range and wireless-like charging. Effectively overcoming the two challenges, our result supplies an insightful guideline to the practical realization of the QB by reservoir engineering.
Collapse
Affiliation(s)
- Wan-Lu Song
- Department of Physics, Hubei University, Wuhan 430062, China
| | - Hai-Bin Liu
- Department of Physics, Hubei University, Wuhan 430062, China
| | - Bin Zhou
- Department of Physics, Hubei University, Wuhan 430062, China
| | - Wan-Li Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jun-Hong An
- Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou Center for Theoretical Physics, and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Arjmandi MB, Mohammadi H, Saguia A, Sarandy MS, Santos AC. Localization effects in disordered quantum batteries. Phys Rev E 2023; 108:064106. [PMID: 38243481 DOI: 10.1103/physreve.108.064106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/07/2023] [Indexed: 01/21/2024]
Abstract
We investigate the effect of localization on the local charging of quantum batteries (QBs) modeled by disordered spin systems. Two distinct schemes based on the transverse-field random Ising model are considered, with Ising couplings defined on a Chimera graph and on a linear chain with up to next-to-nearest-neighbor interactions. By adopting a low-energy demanding charging process driven by local fields only, we obtain that the maximum extractable energy by unitary processes (ergotropy) is highly enhanced in the ergodic phase in comparison with the many-body localization (MBL) scenario. As we turn off the next-to-nearest-neighbor interactions in the Ising chain, we have the onset of the Anderson localization phase. We then show that the Anderson phase exhibits a hybrid behavior, interpolating between large and small ergotropy as the disorder strength is increased. We also consider the splitting of total ergotropy into its coherent and incoherent contributions. This incoherent part implies in a residual ergotropy that is fully robust against dephasing, which is a typical process leading to the self-discharging of the battery in a real setup. Our results are experimentally feasible in scalable systems, such as in superconducting integrated circuits.
Collapse
Affiliation(s)
- Mohammad B Arjmandi
- Faculty of Physics, University of Isfahan, P.O. Box 81746-7344, Isfahan, Iran and Quantum Optics Research Group, University of Isfahan, Isfahan 81746-7344, Iran
| | - Hamidreza Mohammadi
- Faculty of Physics, University of Isfahan, P.O. Box 81746-7344, Isfahan, Iran and Quantum Optics Research Group, University of Isfahan, Isfahan 81746-7344, Iran
| | - Andreia Saguia
- Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoatá, 24210-346 Niterói, Rio de Janeiro, Brazil
| | - Marcelo S Sarandy
- Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoatá, 24210-346 Niterói, Rio de Janeiro, Brazil
| | - Alan C Santos
- Departamento de Física, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235-SP-310, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|
6
|
Mojaveri B, Jafarzadeh Bahrbeig R, Fasihi MA, Babanzadeh S. Enhancing the direct charging performance of an open quantum battery by adjusting its velocity. Sci Rep 2023; 13:19827. [PMID: 37964073 PMCID: PMC10645758 DOI: 10.1038/s41598-023-47193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023] Open
Abstract
The performance of open quantum batteries (QBs) is severely limited by decoherence due to the interaction with the surrounding environment. So, protecting the charging processes against decoherence is of great importance for realizing QBs. In this work we address this issue by developing a charging process of a qubit-based open QB composed of a qubit-battery and a qubit-charger, where each qubit moves inside an independent cavity reservoir. Our results show that, in both the Markovian and non-Markovian dynamics, the charging characteristics, including the charging energy, efficiency and ergotropy, regularly increase with increasing the speed of charger and battery qubits. Interestingly, when the charger and battery move with higher velocities, the initial energy of the charger is completely transferred to the battery in the Markovian dynamics. In this situation, it is possible to extract the total stored energy as work for a long time. Our findings show that open moving-qubit systems are robust and reliable QBs, thus making them a promising candidate for experimental implementations.
Collapse
Affiliation(s)
- B Mojaveri
- Department of Physics, Azarbaijan Shahid Madani University, PO Box 51745-406, Tabriz, Iran.
| | - R Jafarzadeh Bahrbeig
- Department of Physics, Azarbaijan Shahid Madani University, PO Box 51745-406, Tabriz, Iran
| | - M A Fasihi
- Department of Physics, Azarbaijan Shahid Madani University, PO Box 51745-406, Tabriz, Iran
| | - S Babanzadeh
- Department of Physics, Azarbaijan Shahid Madani University, PO Box 51745-406, Tabriz, Iran
| |
Collapse
|
7
|
Akhouri U, Shandera S, Yesmurzayeva G. Increasing Extractable Work in Small Qubit Landscapes. ENTROPY (BASEL, SWITZERLAND) 2023; 25:947. [PMID: 37372291 PMCID: PMC10297148 DOI: 10.3390/e25060947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
An interesting class of physical systems, including those associated with life, demonstrates the ability to hold thermalization at bay and perpetuate states of high free-energy compared to a local environment. In this work we study quantum systems with no external sources or sinks for energy, heat, work, or entropy that allow for high free-energy subsystems to form and persist. We initialize systems of qubits in mixed, uncorrelated states and evolve them subject to a conservation law. We find that four qubits make up the minimal system for which these restricted dynamics and initial conditions allow an increase in extractable work for a subsystem. On landscapes of eight co-evolving qubits, interacting in randomly selected subsystems at each step, we demonstrate that restricted connectivity and an inhomogeneous distribution of initial temperatures both lead to landscapes with longer intervals of increasing extractable work for individual qubits. We demonstrate the role of correlations that develop on the landscape in enabling a positive change in extractable work.
Collapse
Affiliation(s)
- Unnati Akhouri
- Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA; (S.S.); (G.Y.)
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sarah Shandera
- Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA; (S.S.); (G.Y.)
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gaukhar Yesmurzayeva
- Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA; (S.S.); (G.Y.)
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
Koshihara K, Yuasa K. Quantum ergotropy and quantum feedback control. Phys Rev E 2023; 107:064109. [PMID: 37464633 DOI: 10.1103/physreve.107.064109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/08/2023] [Indexed: 07/20/2023]
Abstract
We study the energy extraction from and charging to a finite-dimensional quantum system by general quantum operations. We prove that the changes in energy induced by unital quantum operations are limited by the ergotropy and charging bounds for unitary quantum operations. This implies that, in order to break the ergotropy bound for unitary quantum operations, one needs to perform a quantum operation with feedback control. We also show that the ergotropy bound for unital quantum operations, applied to initial thermal equilibrium states, is tighter than the inequality representing the standard second law of thermodynamics without feedback control.
Collapse
Affiliation(s)
- Kenta Koshihara
- Department of Physics, Waseda University, Tokyo 169-8555, Japan
| | - Kazuya Yuasa
- Department of Physics, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
9
|
Li JL, Shen HZ, Yi XX. Quantum batteries in non-Markovian reservoirs. OPTICS LETTERS 2022; 47:5614-5617. [PMID: 37219284 DOI: 10.1364/ol.471820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/24/2022] [Indexed: 05/24/2023]
Abstract
In this Letter, we propose schemes to improve the performance of quantum batteries and provide a new, to the best of our knowledge, quantum source for a quantum battery without an external driving field. We show that the memory effect of the non-Markovian reservoir can play a significant role in improving the performance of quantum batteries, which originates from a backflow on the ergotropy in the non-Markovian regime, while there is no counterpart in Markovian approximation. We find that the peak for the maximum average storing power in the non-Markovian regime can be enhanced by manipulating the coupling strength between the charger and the battery. Finally, we find that the battery can also be charged by non-rotating wave terms without driving fields.
Collapse
|
10
|
Shi HL, Ding S, Wan QK, Wang XH, Yang WL. Entanglement, Coherence, and Extractable Work in Quantum Batteries. PHYSICAL REVIEW LETTERS 2022; 129:130602. [PMID: 36206414 DOI: 10.1103/physrevlett.129.130602] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/22/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
We investigate the connection between quantum resources and extractable work in quantum batteries. We demonstrate that quantum coherence in the battery or the battery-charger entanglement is a necessary resource for generating nonzero extractable work during the charging process. At the end of the charging process, we also establish a tight link of coherence and entanglement with the final extractable work: coherence naturally promotes the coherent work while coherence and entanglement inhibit the incoherent work. We also show that obtaining maximally coherent work is faster than obtaining maximally incoherent work. Examples ranging from the central-spin battery and the Tavis-Cummings battery to the spin-chain battery are given to illustrate these results.
Collapse
Affiliation(s)
- Hai-Long Shi
- School of Physics, Northwest University, Xi'an 710127, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, APM, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shu Ding
- School of Physics, Northwest University, Xi'an 710127, China
| | - Qing-Kun Wan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, APM, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Hui Wang
- School of Physics, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China
- Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China
| | - Wen-Li Yang
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China
- Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China
- Institute of Modern Physics, Northwest University, Xi'an 710127, China
| |
Collapse
|
11
|
Arjmandi MB, Mohammadi H, Santos AC. Enhancing self-discharging process with disordered quantum batteries. Phys Rev E 2022; 105:054115. [PMID: 35706233 DOI: 10.1103/physreve.105.054115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
One of the most important devices emerging from quantum technology are quantum batteries. However, self-discharging, the process of charge wasting of quantum batteries due to decoherence phenomenon, limits their performance, measured by the concept of ergotropy and half-life time of the quantum battery. The effects of local field fluctuation, introduced by the disorder term in the Hamiltonian of the system, on the performance of the quantum batteries is investigated in this paper. The results reveal that the disorder term could compensate disruptive effects of the decoherence, i.e., self-discharging, and hence improve the performance of the quantum battery via "incoherent gain of ergotropy" procedure. Adjusting the strength of the disorder parameter to a proper value and choosing a suitable initial state of the quantum battery, the amount of free ergotropy, defined with respect to the free Hamiltonian, could exceed the amount of initial stored ergotropy. In addition harnessing the degree of the disorder parameter could help to enhance the half-life time of the quantum battery. This study opens perspective to further investigation of the performance of quantum batteries that explore disorder and many-body effects.
Collapse
Affiliation(s)
- Mohammad B Arjmandi
- Faculty of Physics, University of Isfahan, P.O. Box 81746-7344, Isfahan, Iran
- Quantum Optics Research Group, University of Isfahan, Isfahan, Iran
| | - Hamidreza Mohammadi
- Faculty of Physics, University of Isfahan, P.O. Box 81746-7344, Isfahan, Iran
- Quantum Optics Research Group, University of Isfahan, Isfahan, Iran
| | - Alan C Santos
- Departamento de Física, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235 - SP-310, 13565-905 São Carlos, SP, Brazil
- Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
12
|
Kamin FH, Salimi S, Santos AC. Exergy of passive states: Waste energy after ergotropy extraction. Phys Rev E 2021; 104:034134. [PMID: 34654149 DOI: 10.1103/physreve.104.034134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/15/2021] [Indexed: 11/07/2022]
Abstract
Work extraction protocol is always a significant issue in the context of quantum batteries, in which the notion of ergotropy is used to quantify a particular amount of energy that can be extracted through unitary processes. Given the total amount of energy stored in a quantum system, quantifying wasted energy after the ergotropy extraction is a question to be considered when undesired coupling with thermal reservoirs is taken into account. In this paper, we show that some amount of energy can be lost when we extract ergotropy from a quantum system and quantified by the exergy of passive states. Through a particular example, one shows that ergotropy extraction can be done by preserving the quantum correlations of a quantum system. Our study opens the perspective for new advances in open system quantum batteries able to explore exergy stored as quantum correlations.
Collapse
Affiliation(s)
- F H Kamin
- Department of Physics, University of Kurdistan, P. O. Box 66177-15175, Sanandaj, Iran
| | - S Salimi
- Department of Physics, University of Kurdistan, P. O. Box 66177-15175, Sanandaj, Iran
| | - Alan C Santos
- Departamento de Física, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235-SP-310, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|
13
|
Huangfu Y, Jing J. High-capacity and high-power collective charging with spin chargers. Phys Rev E 2021; 104:024129. [PMID: 34525586 DOI: 10.1103/physreve.104.024129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/06/2021] [Indexed: 11/07/2022]
Abstract
Quantum battery works as a micro- or nanodevice to store and redistribute energy at the quantum level. Here we propose a spin-charger protocol, in which the battery cells are charged by a finite number of spins through a general Heisenberg XY interaction. Under the isotropic interaction, the spin-charger protocol is endowed with a higher capacity in terms of the maximum stored energy than the conventional protocols, where the battery is charged by a continuous-variable system, e.g., a cavity mode. By tuning the charger size, a tradeoff between the maximum stored energy and the average charging power is found in comparison to the cavity-charger protocol in the Tavis-Cummings model. Quantum advantage of our protocol is manifested by the scaling behavior of the optimal average power with respect to the battery size, in comparing the collective charging scheme to its parallel counterpart. We also discuss the detrimental effect on the charging performance from the anisotropic interaction between the battery and the charger, the nonideal initial states for both of them, and the crosstalk among the charger spins. A strong charger-charger interaction can be used to decouple the battery and the charger. Our findings about the advantages of the spin-charger protocol over the conventional cavity-charger protocols, including the high capacity of energy storage and the superior power law in the collective charging, provide an insight to exploit an efficient quantum battery based on the spin-spin-environment model.
Collapse
Affiliation(s)
- Yong Huangfu
- Department of Physics, Zhejiang University, Hangzhou 310027 Zhejiang, China
| | - Jun Jing
- Department of Physics, Zhejiang University, Hangzhou 310027 Zhejiang, China
| |
Collapse
|
14
|
Mukherjee V, Divakaran U. Many-body quantum thermal machines. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:454001. [PMID: 34359061 DOI: 10.1088/1361-648x/ac1b60] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Thermodynamics of quantum systems and quantum thermal machines are rapidly developing fields, which have already delivered several promising results, as well as raised many intriguing questions. Many-body quantum machines present new opportunities stemming from many-body effects. At the same time, they pose new challenges related to many-body physics. In this short review we discuss some of the recent developments on technologies based on many-body quantum systems. We mainly focus on many-body effects in quantum thermal machines. We also briefly address the role played by many-body systems in the development of quantum batteries and quantum probes.
Collapse
Affiliation(s)
- Victor Mukherjee
- Department of Physical Sciences, IISER Berhampur, Berhampur 760010, India
| | - Uma Divakaran
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad, 678557, India
| |
Collapse
|
15
|
Sone A, Deffner S. Quantum and Classical Ergotropy from Relative Entropies. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1107. [PMID: 34573732 PMCID: PMC8469566 DOI: 10.3390/e23091107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/20/2022]
Abstract
The quantum ergotropy quantifies the maximal amount of work that can be extracted from a quantum state without changing its entropy. Given that the ergotropy can be expressed as the difference of quantum and classical relative entropies of the quantum state with respect to the thermal state, we define the classical ergotropy, which quantifies how much work can be extracted from distributions that are inhomogeneous on the energy surfaces. A unified approach to treat both quantum as well as classical scenarios is provided by geometric quantum mechanics, for which we define the geometric relative entropy. The analysis is concluded with an application of the conceptual insight to conditional thermal states, and the correspondingly tightened maximum work theorem.
Collapse
Affiliation(s)
- Akira Sone
- Aliro Technologies, Inc., Boston, MA 02135, USA
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Sebastian Deffner
- Department of Physics, University of Maryland, Baltimore County, Baltimore, MD 21250, USA;
- Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas, Campinas 13083-859, Brazil
| |
Collapse
|
16
|
Touil A, Weber K, Deffner S. Quantum Euler Relation for Local Measurements. ENTROPY (BASEL, SWITZERLAND) 2021; 23:889. [PMID: 34356429 PMCID: PMC8303509 DOI: 10.3390/e23070889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 01/24/2023]
Abstract
In classical thermodynamics the Euler relation is an expression for the internal energy as a sum of the products of canonical pairs of extensive and intensive variables. For quantum systems the situation is more intricate, since one has to account for the effects of the measurement back action. To this end, we derive a quantum analog of the Euler relation, which is governed by the information retrieved by local quantum measurements. The validity of the relation is demonstrated for the collective dissipation model, where we find that thermodynamic behavior is exhibited in the weak-coupling regime.
Collapse
Affiliation(s)
- Akram Touil
- Department of Physics, University of Maryland, Baltimore County, Baltimore, MD 21250, USA; (K.W.); (S.D.)
| | - Kevin Weber
- Department of Physics, University of Maryland, Baltimore County, Baltimore, MD 21250, USA; (K.W.); (S.D.)
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Sebastian Deffner
- Department of Physics, University of Maryland, Baltimore County, Baltimore, MD 21250, USA; (K.W.); (S.D.)
- Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas, Campinas 13083-859, SP, Brazil
| |
Collapse
|
17
|
Kamin FH, Tabesh FT, Salimi S, Santos AC. Entanglement, coherence, and charging process of quantum batteries. Phys Rev E 2020; 102:052109. [PMID: 33327179 DOI: 10.1103/physreve.102.052109] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Quantum devices are systems that can explore quantum phenomena, such as entanglement or coherence, for example, to provide some enhancement performance concerning their classical counterparts. In particular, quantum batteries are devices that use entanglement as the main element in their high performance in powerful charging. In this paper, we explore quantum battery performance and its relationship with the amount of entanglement that arises during the charging process. By using a general approach to a two- and three-cell battery, our results suggest that entanglement is not the main resource in quantum batteries, where there is a nontrivial correlation-coherence tradeoff as a resource for the high efficiency of such quantum devices.
Collapse
Affiliation(s)
- F H Kamin
- Department of Physics, University of Kurdistan, P. O. Box 66177-15175, Sanandaj, Iran
| | - F T Tabesh
- Department of Physics, University of Kurdistan, P. O. Box 66177-15175, Sanandaj, Iran
| | - S Salimi
- Department of Physics, University of Kurdistan, P. O. Box 66177-15175, Sanandaj, Iran
| | - Alan C Santos
- Departamento de Física, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235 - SP-310, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|