1
|
Wu JC, Yang F, Dong TW, An M. Absolute negative mobility of an inertial Brownian particle in an oscillating potential. Phys Rev E 2024; 110:044144. [PMID: 39562987 DOI: 10.1103/physreve.110.044144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024]
Abstract
Transport of an inertial Brownian particle in an oscillating potential is numerically investigated in the presence of an external constant force. The oscillating potential can break thermodynamic equilibrium. Within appropriate parameter regimes, the particle moves in a direction opposite to the constant force, which means that the system can exhibit the phenomenon of absolute negative mobility (ANM). Furthermore, it may be inferred from the bifurcation diagrams that ANM originates from chaotic-periodic transitions, where the particle subjected to a constant force performs reverse periodic motion due to continuous reverse driving by the oscillating potential. Based on GPU acceleration techniques, we present the distribution of ANM in the parameter space and analyze how the ANM depends on the system parameters. These results are robust in a wide range of parameters and may pave the way to the experimental realization of ANM.
Collapse
|
2
|
Wiśniewski M, Spiechowicz J. Memory-induced absolute negative mobility. CHAOS (WOODBURY, N.Y.) 2024; 34:073101. [PMID: 38949530 DOI: 10.1063/5.0213706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024]
Abstract
Non-Markovian systems form a broad area of physics that remains greatly unexplored despite years of intensive investigations. The spotlight is on memory as a source of effects that are absent in their Markovian counterparts. In this work, we dive into this problem and analyze a driven Brownian particle moving in a spatially periodic potential and exposed to correlated thermal noise. We show that the absolute negative mobility effect, in which the net movement of the particle is in the direction opposite to the average force acting on it, may be induced by the memory of the setup. To explain the origin of this phenomenon, we resort to the recently developed effective mass approach to dynamics of non-Markovian systems.
Collapse
Affiliation(s)
- M Wiśniewski
- Institute of Physics, University of Silesia, 41-500 Chorzów, Poland
| | - J Spiechowicz
- Institute of Physics, University of Silesia, 41-500 Chorzów, Poland
| |
Collapse
|
3
|
Wang X, Wu Y, Xu L, Wang J. Global dynamics, thermodynamics and non-equilibrium origin of bifurcations for single neuron dynamics. J Chem Phys 2023; 159:154105. [PMID: 37850693 DOI: 10.1063/5.0169296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
The understanding of neural excitability and oscillations in single neuron dynamics remains incomplete in terms of global stabilities and the underlying mechanisms for phase formation and associated phase transitions. In this study, we investigate the mechanism of single neuron excitability and spontaneous oscillations by analyzing the potential landscape and curl flux. The topological features of the landscape play a crucial role in assessing the stability of resting states and the robustness/coherence of oscillations. We analyze the excitation characteristics in Class I and Class II neurons and establish their relation to biological function. Our findings reveal that the average curl flux and associated entropy production exhibit significant changes near bifurcation or phase transition points. Moreover, the curl flux and entropy production offer insights into the dynamical and thermodynamical origins of nonequilibrium phase transitions and exhibit distinct behaviors in Class I and Class II neurons. Additionally, we quantify time irreversibility through the difference in cross-correlation functions in both forward and backward time, providing potential indicators for the emergence of nonequilibrium phase transitions in single neurons.
Collapse
Affiliation(s)
- Xiaochen Wang
- College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Yuxuan Wu
- College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Liufang Xu
- College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Jin Wang
- Department of Chemistry and of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, USA
| |
Collapse
|
4
|
Wiśniewski M, Spiechowicz J. Paradoxical nature of negative mobility in the weak dissipation regime. CHAOS (WOODBURY, N.Y.) 2023; 33:2894479. [PMID: 37276563 DOI: 10.1063/5.0146649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023]
Abstract
We reinvestigate a paradigmatic model of nonequilibrium statistical physics consisting of an inertial Brownian particle in a symmetric periodic potential subjected to both a time-periodic force and a static bias. In doing so, we focus on the negative mobility phenomenon in which the average velocity of the particle is opposite to the constant force acting on it. Surprisingly, we find that in the weak dissipation regime, thermal fluctuations induce negative mobility much more frequently than it happens if dissipation is stronger. In particular, for the very first time, we report a parameter set in which thermal noise causes this effect in the nonlinear response regime. Moreover, we show that the coexistence of deterministic negative mobility and chaos is routinely encountered when approaching the overdamped limit in which chaos does not emerge rather than near the Hamiltonian regime of which chaos is one of the hallmarks. On the other hand, at non-zero temperature, the negative mobility in the weak dissipation regime is typically affected by weak ergodicity breaking. Our findings can be corroborated experimentally in a multitude of physical realizations, including, e.g., Josephson junctions and cold atoms dwelling in optical lattices.
Collapse
Affiliation(s)
- Mateusz Wiśniewski
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Jakub Spiechowicz
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland
| |
Collapse
|
5
|
G R A, Barik D. Roughness in the periodic potential induces absolute negative mobility in a driven Brownian ratchet. Phys Rev E 2022; 106:044129. [PMID: 36397596 DOI: 10.1103/physreve.106.044129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Absolute negative mobility, where particles move opposite to the direction as governed by the external load, is an anomalous transport property of a Brownian ratchet and has technological implications in mass separation and bioanalytical applications. We numerically investigated here the effect of roughness in symmetric periodic potential on the negative mobility of a driven inertial Brownian ratchet in the presence of an external load. We show that the microscopic spatial heterogeneity of the potential can generate negative mobility which would not otherwise be possible under smooth potential in the concerned parameter space. We determined the optimal condition in terms of parameter space for such anomalous behavior. Our calculations indicate that the shift of balance towards the negative velocity phase in the temporal oscillations of velocity and weakly chaotic dynamics are responsible factors for roughness-induced negative mobility. These calculations highlight a constructive role of roughness in the anomalous transport properties of Brownian ratchet.
Collapse
Affiliation(s)
- Archana G R
- School of Chemistry, University of Hyderabad, Gachibowli, 500046 Hyderabad, India
| | - Debashis Barik
- School of Chemistry, University of Hyderabad, Gachibowli, 500046 Hyderabad, India
| |
Collapse
|
6
|
Luo Y, Zeng C, Huang T, Ai BQ. Anomalous transport tuned through stochastic resetting in the rugged energy landscape of a chaotic system with roughness. Phys Rev E 2022; 106:034208. [PMID: 36266857 DOI: 10.1103/physreve.106.034208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Stochastic resetting causes kinetic phase transitions, whereas its underlying physical mechanism remains to be elucidated. We here investigate the anomalous transport of a particle moving in a chaotic system with a stochastic resetting and a rough potential and focus on how the stochastic resetting, roughness, and nonequilibrium noise affect the transports of the particle. We uncover the physical mechanism for stochastic resetting resulting in the anomalous transport in a nonlinear chaotic system: The particle is reset to a new basin of attraction which may be different from the initial basin of attraction from the view of dynamics. From the view of the energy landscape, the particle is reset to a new energy state of the energy landscape which may be different from the initial energy state. This resetting can lead to a kinetic phase transition between no transport and a finite net transport or between negative mobility and positive mobility. The roughness and noise also lead to the transition. Based on the mechanism, the transport of the particle can be tuned by these parameters. For example, the combination of the stochastic resetting, roughness, and noise can enhance the transport and tune negative mobility, the enhanced stability of the system, and the resonant-like activity. We analyze these results through variances (e.g., mean-squared velocity, etc.) and correlation functions (i.e., velocity autocorrelation function, position-velocity correlation function, etc.). Our results can be extensively applied in the biology, physics, and chemistry, even social system.
Collapse
Affiliation(s)
- Yuhui Luo
- Faculty of Civil Engineering and Mechanics/Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
- School of Physics and Information Engineering, Zhaotong University, Zhaotong 657000, China
| | - Chunhua Zeng
- Faculty of Civil Engineering and Mechanics/Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Tao Huang
- Faculty of Civil Engineering and Mechanics/Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Bao-Quan Ai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement, SPTE, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
7
|
Ndjomatchoua FT, Djomo TLM, Kemwoue FF, Gninzanlong CL, Kepnang MP, Siewe MS, Tchawoua C, Pedro SA, Kofane TC. Amplitude response, Melnikov's criteria, and chaos occurrence in a Duffing's system subjected to an external periodic excitation with a variable shape. CHAOS (WOODBURY, N.Y.) 2022; 32:083144. [PMID: 36049915 DOI: 10.1063/5.0082235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The present study considers the nonlinear dynamics of a Duffing oscillator under a symmetric potential subjected to a pulse-type excitation with a deformable shape. Our attention is focused on the effects of the external excitation shape parameter r and its period. The frequency response of the system is derived by using a semi-analytical approach. Interestingly, the frequency-response curve displays a large number of resonance peaks and anti-resonance peaks as well. Surprisingly, a resonance phenomenon termed here as shape-induced-resonance is noticed as it occurs solely due to the change in the shape parameter of the external periodic force. The system exhibits amplitude jumps and hysteresis depending on r. The critical driving magnitude for the chaos occurrence is investigated through Melnikov's method. Numerical analysis based on bifurcation diagrams and Lyapunov exponent is used to show how chaos occurs in the system. It is shown that the threshold amplitude of the excitation to observe chaotic dynamics decreases/increases for small/large values of r. In general, the theoretical estimates match with numerical simulations and electronic simulations as well.
Collapse
Affiliation(s)
- Frank T Ndjomatchoua
- Spatial Transformation of Landscapes, Sustainable Impact through Rice-Based Systems, International Rice Research Institute (IRRI), DAPO Box 7777-1301, Metro Manila, Philippines
| | - Thierry L M Djomo
- Department of Civil Engineering, National Higher Polytechnic Institute, University of Bamenda, P.O. BOX 39, Bambili, Bamenda, Cameroon
| | - Florent F Kemwoue
- Department of Physics, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Ngoa Ekelle, Yaoundé, Cameroon
| | - Carlos L Gninzanlong
- Department of Physics, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Ngoa Ekelle, Yaoundé, Cameroon
| | - Maxime P Kepnang
- Department of Physics, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Ngoa Ekelle, Yaoundé, Cameroon
| | - Martin S Siewe
- Department of Physics, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Ngoa Ekelle, Yaoundé, Cameroon
| | - Clément Tchawoua
- Department of Physics, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Ngoa Ekelle, Yaoundé, Cameroon
| | - Sansao A Pedro
- Departamento de Matemática e Informatica, Faculdade de Ciências, Universidade Eduardo Mondlane, 254 Maputo, Mozambique
| | - Timoleon C Kofane
- Department of Physics, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Ngoa Ekelle, Yaoundé, Cameroon
| |
Collapse
|
8
|
Luo Y, Zeng C, Li B. Negative rectification and anomalous diffusion in nonlinear substrate potentials: Dynamical relaxation and information entropy. Phys Rev E 2022; 105:024204. [PMID: 35291109 DOI: 10.1103/physreve.105.024204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
We numerically investigate the rectification of the probability flux and dynamical relaxation of particles moving in a system with and without noise. The system, driven by two external forces, consists of two substrate potentials that have identical shapes and different potential barriers with different friction coefficients. The deterministic model exhibits the perfect rectification of the probability flux, ratchet effect, and the dependence of the unpredictability of the dynamics on basin of attraction. In contrast, the stochastic model displays that the rectification is sensitive to the temperature and an external bias. They can induce kinetic phase transitions between no transport and a finite net transport. These transitions lead to an unexpected phenomenon, called negative rectification. The results are analyzed through the corresponding time-dependent diffusion coefficient, information entropy (IE), etc. At a low temperature, anomalous diffusions occur in system. For the occurrence of the flux in certain parameter regimes, the larger the diffusion is, the smaller the corresponding IE is, and vice versa. We also present the selected parameter regimes for the emergence of the rectification and negative rectification. Additionally, we study the rectification of the interacting particles in the system and find that the flux may depend on the coupling strength and the number of the interacting particles, and that collective motions occur for the forward flux. Our work provides not only a way of the rectification for the transport of various particles (e.g., ions, electrons, photons, phonons, molecules, DNA chains, nanoswimmers, dust particles, etc.) in physics, chemistry, biology, and material science, but also a design of various circuits.
Collapse
Affiliation(s)
- Yuhui Luo
- Faculty of Civil Engineering and Mechanics/Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
- School of Physics and Information Engineering, Zhaotong University, Zhaotong 657000, China
| | - Chunhua Zeng
- Faculty of Civil Engineering and Mechanics/Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Baowen Li
- Paul M. Rady Department of Mechanical Engineering and Department of Physics, University of Colorado, Boulder, Colorado 80309-0427, USA
| |
Collapse
|
9
|
Valani RN. Anomalous transport of a classical wave-particle entity in a tilted potential. Phys Rev E 2022; 105:L012101. [PMID: 35193237 DOI: 10.1103/physreve.105.l012101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/17/2021] [Indexed: 11/07/2022]
Abstract
A classical wave-particle entity in the form of a millimetric walking droplet can emerge on the free surface of a vertically vibrating liquid bath. Such wave-particle entities have been shown to exhibit hydrodynamic analogs of quantum systems. Using an idealized theoretical model of this wave-particle entity in a tilted potential, we explore its transport behavior. The integro-differential equation of motion governing the dynamics of the wave-particle entity transforms to a Lorenz-like system of ordinary differential equations that drives the particle's velocity. Several anomalous transport regimes such as absolute negative mobility, differential negative mobility, and lock-in regions corresponding to force-independent mobility are observed. These observations motivate experiments in the hydrodynamic walking-droplet system for the experimental realizations of anomalous transport phenomena.
Collapse
Affiliation(s)
- Rahil N Valani
- School of Mathematical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
10
|
Zhang C, Yang T, Qu SX. Impact of time delays and environmental noise on the extinction of a population dynamics model. THE EUROPEAN PHYSICAL JOURNAL. B 2021; 94:219. [PMID: 34751210 PMCID: PMC8565651 DOI: 10.1140/epjb/s10051-021-00219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
ABSTRACT In this paper, we examine a population model with carrying capacity, time delay, and sources of additive and multiplicative environmental noise. We find that time delay, noise sources and their correlation induce regime shifts and transitions between the population survival state and the extinction state. To explore the transition mechanism between these two states, we analyzed the shift time to extinction, or the delayed extinction time, of populations. The main finding is that the extinction transition time as a function of the noise intensity shows a maximum, indicating the existence of an appropriate noise intensity leading to a maximal delayed extinction. This nonmonotonic behavior, with a maximum, is a signature of the noise-enhanced stability phenomenon, observed in many physical and complex metastable systems. In particular, this maximum increases (or decreases) as the cross-correlation intensity or the delay time in the death process increases. Furthermore, the signal-to-noise ratio as a function of noise intensity shows a maximum, which is a signature of the stochastic resonance phenomenon in the population dynamics model investigated in the presence of time delay and environmental noise.
Collapse
Affiliation(s)
- Chun Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| | - Tao Yang
- Department of Engineering Mechanics, Northwestern Polytechnical University, Xi’an, 710072 People’s Republic of China
| | - Shi-Xian Qu
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| |
Collapse
|
11
|
Xiong Z, Li X, Ye M, Zhang Q. Finite-time stability and optimal control of an impulsive stochastic reaction-diffusion vegetation-water system driven by Lévy process with time-varying delay. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:8462-8498. [PMID: 34814308 DOI: 10.3934/mbe.2021419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper, a reaction-diffusion vegetation-water system with time-varying delay, impulse and Lévy jump is proposed. The existence and uniqueness of the positive solution are proved. Meanwhile, mainly through the principle of comparison, we obtain the sufficient conditions for finite-time stability which reflect the effect of time delay, diffusion, impulse, and noise. Besides, considering the planting, irrigation and other measures, we introduce control variable into the vegetation-water system. In order to save the costs of strategies, the optimal control is analyzed by using the minimum principle. Finally, numerical simulations are shown to illustrate the effectiveness of our theoretical results.
Collapse
Affiliation(s)
- Zixiao Xiong
- School of Mathematics and Statistics, Ningxia University, Yinchuan, 750021, China
| | - Xining Li
- School of Mathematics and Statistics, Ningxia University, Yinchuan, 750021, China
| | - Ming Ye
- Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, USA
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
| | - Qimin Zhang
- School of Creative and Cultural Business, Robert Gordon University, Aberdeen, Scotland, UK
| |
Collapse
|
12
|
G R A, Barik D. Roughness in the periodic potential enhances transport in a driven inertial ratchet. Phys Rev E 2021; 104:024103. [PMID: 34525624 DOI: 10.1103/physreve.104.024103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/14/2021] [Indexed: 11/07/2022]
Abstract
We study the effects of roughness in the asymmetric periodic potential on the transport and diffusion of an inertial Brownian particle driven by a time-periodic force in a Gaussian environment. We find that moderate roughness leads to the loss of transient anomalous diffusion, and it helps to establish normal diffusion in the weak noise limit. We uncover a contrasting effect of roughness on the transport of particles in the weak and moderate to large noise limit. In the weak noise limit, small amplitude roughness results in the increase of directed transport, whereas in the moderate to large noise limit, roughness hinders transport. The deterministic dynamics of the system reveals that the purely periodic system under smooth potential transits into a chaotic system due to the moderate roughness in the potential. Therefore our calculations demonstrate the constructive role of roughness in the transport of particles in the inertial regime.
Collapse
Affiliation(s)
- Archana G R
- School of Chemistry, University of Hyderabad, Gachibowli, 500046, Hyderabad, India
| | - Debashis Barik
- School of Chemistry, University of Hyderabad, Gachibowli, 500046, Hyderabad, India
| |
Collapse
|