1
|
Loos SAM, Arabha S, Rajabpour A, Hassanali A, Roldán É. Nonreciprocal forces enable cold-to-hot heat transfer between nanoparticles. Sci Rep 2023; 13:4517. [PMID: 36934145 PMCID: PMC10024720 DOI: 10.1038/s41598-023-31583-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/14/2023] [Indexed: 03/20/2023] Open
Abstract
We study the heat transfer between two nanoparticles held at different temperatures that interact through nonreciprocal forces, by combining molecular dynamics simulations with stochastic thermodynamics. Our simulations reveal that it is possible to construct nano refrigerators that generate a net heat transfer from a cold to a hot reservoir at the expense of power exerted by the nonreciprocal forces. Applying concepts from stochastic thermodynamics to a minimal underdamped Langevin model, we derive exact analytical expressions predictions for the fluctuations of work, heat, and efficiency, which reproduce thermodynamic quantities extracted from the molecular dynamics simulations. The theory only involves a single unknown parameter, namely an effective friction coefficient, which we estimate fitting the results of the molecular dynamics simulation to our theoretical predictions. Using this framework, we also establish design principles which identify the minimal amount of entropy production that is needed to achieve a certain amount of uncertainty in the power fluctuations of our nano refrigerator. Taken together, our results shed light on how the direction and fluctuations of heat flows in natural and artificial nano machines can be accurately quantified and controlled by using nonreciprocal forces.
Collapse
Affiliation(s)
- Sarah A M Loos
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK.
- ICTP - International Centre for Theoretical Physics, Strada Costiera, 11, 34151, Trieste, Italy.
| | - Saeed Arabha
- Department of Mechanical Engineering, Lassonde School of Engineering, York University, Toronto, Canada
- Advanced Simulation and Computing Laboratory (ASCL), Imam Khomeini International University, Qazvin, Iran
| | - Ali Rajabpour
- Advanced Simulation and Computing Laboratory (ASCL), Imam Khomeini International University, Qazvin, Iran
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Ali Hassanali
- ICTP - International Centre for Theoretical Physics, Strada Costiera, 11, 34151, Trieste, Italy
| | - Édgar Roldán
- ICTP - International Centre for Theoretical Physics, Strada Costiera, 11, 34151, Trieste, Italy
| |
Collapse
|
2
|
Álvarez CE, Camargo M, Téllez G. One-particle engine with a porous piston. Sci Rep 2022; 12:13896. [PMID: 35974083 PMCID: PMC9381796 DOI: 10.1038/s41598-022-18057-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
We propose a variation of the classical Szilard engine that uses a porous piston. Such an engine requires neither information about the position of the particle, nor the removal and subsequent insertion of the piston when resetting the engine to continue doing work by lifting a mass against a gravitational field. Though the engine operates in contact with a single thermal reservoir, the reset mechanism acts as a second reservoir, dissipating energy when a mass that has been lifted by the engine is removed to initiate a new operation cycle.
Collapse
Affiliation(s)
- Carlos E Álvarez
- Escuela de Ingeniería, Ciencia y Tecnología, Universidad del Rosario, Bogotá, Colombia.
| | - Manuel Camargo
- FIMEB & CICBA, Universidad Antonio Nariño-Campus Farallones, Cali, Colombia
| | - Gabriel Téllez
- Departamento de Física, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
3
|
Cerasoli S, Ciliberto S, Marinari E, Oshanin G, Peliti L, Rondoni L. Spectral fingerprints of nonequilibrium dynamics: The case of a Brownian gyrator. Phys Rev E 2022; 106:014137. [PMID: 35974646 DOI: 10.1103/physreve.106.014137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The same system can exhibit a completely different dynamical behavior when it evolves in equilibrium conditions or when it is driven out-of-equilibrium by, e.g., connecting some of its components to heat baths kept at different temperatures. Here we concentrate on an analytically solvable and experimentally relevant model of such a system-the so-called Brownian gyrator-a two-dimensional nanomachine that performs a systematic, on average, rotation around the origin under nonequilibrium conditions, while no net rotation takes place under equilibrium ones. On this example, we discuss a question whether it is possible to distinguish between two types of a behavior judging not upon the statistical properties of the trajectories of components but rather upon their respective spectral densities. The latter are widely used to characterize diverse dynamical systems and are routinely calculated from the data using standard built-in packages. From such a perspective, we inquire whether the power spectral densities possess some "fingerprint" properties specific to the behavior in nonequilibrium. We show that indeed one can conclusively distinguish between equilibrium and nonequilibrium dynamics by analyzing the cross-correlations between the spectral densities of both components in the short frequency limit, or from the spectral densities of both components evaluated at zero frequency. Our analytical predictions, corroborated by experimental and numerical results, open a new direction for the analysis of a nonequilibrium dynamics.
Collapse
Affiliation(s)
- Sara Cerasoli
- Department of Civil and Environmental Engineering, Princeton University, Princeton New Jersey 08544, USA
| | - Sergio Ciliberto
- Laboratoire de Physique (UMR CNRS 567246), Ecole Normale Supérieure, Allée d'Italie, 69364 Lyon, France
| | - Enzo Marinari
- Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, I-00185 Roma, Italy
- INFN, Sezione di Roma 1 and Nanotech-CNR, UOS di Roma, P.le A. Moro 2, I-00185 Roma, Italy
| | - Gleb Oshanin
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Luca Peliti
- Santa Marinella Research Institute, Santa Marinella, Italy
| | - Lamberto Rondoni
- Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- INFN, Sezione di Torino, Via P. Giuria 1, 10125 Torino, Italy
| |
Collapse
|
4
|
Fontana PW. Hidden Dissipation and Irreversibility in Maxwell's Demon. ENTROPY (BASEL, SWITZERLAND) 2022; 24:93. [PMID: 35052118 PMCID: PMC8774989 DOI: 10.3390/e24010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023]
Abstract
Maxwell's demon is an entity in a 150-year-old thought experiment that paradoxically appears to violate the second law of thermodynamics by reducing entropy without doing work. It has increasingly practical implications as advances in nanomachinery produce devices that push the thermodynamic limits imposed by the second law. A well-known explanation claiming that information erasure restores second law compliance fails to resolve the paradox because it assumes the second law a priori, and does not predict irreversibility. Instead, a purely mechanical resolution that does not require information theory is presented. The transport fluxes of mass, momentum, and energy involved in the demon's operation are analyzed and show that they imply "hidden" external work and dissipation. Computing the dissipation leads to a new lower bound on entropy production by the demon. It is strictly positive in all nontrivial cases, providing a more stringent limit than the second law and implying intrinsic thermodynamic irreversibility. The thermodynamic irreversibility is linked with mechanical irreversibility resulting from the spatial asymmetry of the demon's speed selection criteria, indicating one mechanism by which macroscopic irreversibility may emerge from microscopic dynamics.
Collapse
Affiliation(s)
- Paul W Fontana
- Physics Department, Seattle University, 901 12th Ave., Seattle, WA 98122, USA
| |
Collapse
|
5
|
Eriksson J, Acciai M, Tesser L, Splettstoesser J. General Bounds on Electronic Shot Noise in the Absence of Currents. PHYSICAL REVIEW LETTERS 2021; 127:136801. [PMID: 34623850 DOI: 10.1103/physrevlett.127.136801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
We investigate the charge and heat electronic noise in a generic two-terminal mesoscopic conductor in the absence of the corresponding charge and heat currents. Despite these currents being zero, shot noise is generated in the system. We show that, irrespective of the conductor's details and the specific nonequilibrium conditions, the charge shot noise never exceeds its thermal counterpart, thus establishing a general bound. Such a bound does not exist in the case of heat noise, which reveals a fundamental difference between charge and heat transport under zero-current conditions.
Collapse
Affiliation(s)
- Jakob Eriksson
- Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, S-412 96 Göteborg, Sweden
- University of Gothenburg, S-412 96 Göteborg, Sweden
| | - Matteo Acciai
- Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - Ludovico Tesser
- Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - Janine Splettstoesser
- Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, S-412 96 Göteborg, Sweden
| |
Collapse
|
6
|
Freitas N, Esposito M. Characterizing autonomous Maxwell demons. Phys Rev E 2021; 103:032118. [PMID: 33862730 DOI: 10.1103/physreve.103.032118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/25/2021] [Indexed: 11/07/2022]
Abstract
We distinguish traditional implementations of autonomous Maxwell demons from related linear devices that were recently proposed, not relying on the notions of measurements and feedback control. In both cases a current seems to flow against its spontaneous direction (imposed, e.g., by a thermal or electric gradient) without external energy intake. However, in the latter case, this current inversion may only be apparent. Even if the currents exchanged between a system and its reservoirs are inverted (by creating additional independent currents between system and demon), this is not enough to conclude that the original current through the system has been inverted. We show that this distinction can be revealed locally by measuring the fluctuations of the system-reservoir currents.
Collapse
Affiliation(s)
- Nahuel Freitas
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|