1
|
Chaki S, Olsen KS, Löwen H. Dynamics of a single anisotropic particle under various resetting protocols. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:115101. [PMID: 39719128 DOI: 10.1088/1361-648x/ada336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/24/2024] [Indexed: 12/26/2024]
Abstract
We study analytically the dynamics of an anisotropic particle subjected to different stochastic resetting schemes in two dimensions. The Brownian motion of shape-asymmetric particles in two dimensions results in anisotropic diffusion at short times, while the late-time transport is isotropic due to rotational diffusion. We show that the presence of orientational resetting promotes the anisotropy to late times. When the spatial and orientational degrees of freedom are reset, we find that a non-trivial spatial probability distribution emerges in the steady state that is determined by the initial orientation, particle asymmetry and the resetting rate. When only spatial degrees of freedom are reset while the orientational degree of freedom is allowed to evolve freely, the steady state is independent of the particle asymmetry. When only particle orientation is reset, the late-time probability density is given by a Gaussian with an effective diffusion tensor, including off-diagonal terms, determined by the resetting rate. Generally, the coupling between the translational and rotational degrees of freedom, when combined with stochastic resetting, gives rise to unique behavior at late times not present in the case of symmetric particles. Considering recent developments in experimental implementations of resetting, our results can be useful for the control of asymmetric colloids, for example in self-assembly processes.
Collapse
Affiliation(s)
- Subhasish Chaki
- Institut für Theoretische Physik II-Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Kristian Stølevik Olsen
- Institut für Theoretische Physik II-Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II-Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Pal PS, Park JM, Pal A, Park H, Lee JS. Active motion can be beneficial for target search with resetting in a thermal environment. Phys Rev E 2024; 110:054124. [PMID: 39690586 DOI: 10.1103/physreve.110.054124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/25/2024] [Indexed: 12/19/2024]
Abstract
Stochastic resetting has recently emerged as an efficient target-searching strategy in various physical and biological systems. The efficiency of this strategy depends on the type of environmental noise, whether it is thermal or telegraphic (active). While the impact of each noise type on a search process has been investigated separately, their combined effects have not been explored. In this work, we explore the effects of stochastic resetting on an active system, namely a self-propelled run-and-tumble particle immersed in a thermal bath. In particular, we assume that the position of the particle is reset at a fixed rate with or without reversing the direction of self-propelled velocity. Using standard renewal techniques, we compute the mean search time of this active particle to a fixed target and investigate the interplay between active and thermal fluctuations. We find that the active search can outperform the Brownian search when the magnitude and flipping rate of self-propelled velocity are large and the strength of environmental noise is small. Notably, we find that the presence of thermal noise in the environment helps reduce the mean first passage time of the run-and-tumble particle compared to the absence of thermal noise. Finally, we observe that reversing the direction of self-propelled velocity while resetting can also reduce the overall search time.
Collapse
|
3
|
Santra S, Singh P. Exact fluctuation and long-range correlations in a single-file model under resetting. Phys Rev E 2024; 109:034123. [PMID: 38632800 DOI: 10.1103/physreve.109.034123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/24/2024] [Indexed: 04/19/2024]
Abstract
Resetting is a renewal mechanism in which a process is intermittently repeated after a random or fixed time. This simple act of stop and repeat profoundly influences the behavior of a system as exemplified by the emergence of nonequilibrium properties and expedition of search processes. Herein we explore the ramifications of stochastic resetting in the context of a single-file system called random average process (RAP) in one dimension. In particular, we focus on the dynamics of tracer particles and analytically compute the variance, equal time correlation, autocorrelation, and unequal time correlation between the positions of different tracer particles. Our study unveils that resetting gives rise to rather different behaviors depending on whether the particles move symmetrically or asymmetrically. For the asymmetric case, the system for instance exhibits a long-range correlation which is not seen in absence of the resetting. Similarly, in contrast to the reset-free RAP, the variance shows distinct scalings for symmetric and asymmetric cases. While for the symmetric case, it decays (towards its steady value) as ∼e^{-rt}/sqrt[t], we find ∼te^{-rt} decay for the asymmetric case (r being the resetting rate). Finally, we examine the autocorrelation and unequal time correlation in the steady state and demonstrate that they obey interesting scaling forms at late times. All our analytical results are substantiated by extensive numerical simulations.
Collapse
Affiliation(s)
- Saikat Santra
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
| | - Prashant Singh
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| |
Collapse
|
4
|
Caraglio M, Kaur H, Fiderer LJ, López-Incera A, Briegel HJ, Franosch T, Muñoz-Gil G. Learning how to find targets in the micro-world: the case of intermittent active Brownian particles. SOFT MATTER 2024; 20:2008-2016. [PMID: 38328899 PMCID: PMC10900891 DOI: 10.1039/d3sm01680c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Finding the best strategy to minimize the time needed to find a given target is a crucial task both in nature and in reaching decisive technological advances. By considering learning agents able to switch their dynamics between standard and active Brownian motion, here we focus on developing effective target-search behavioral policies for microswimmers navigating a homogeneous environment and searching for targets of unknown position. We exploit projective simulation, a reinforcement learning algorithm, to acquire an efficient stochastic policy represented by the probability of switching the phase, i.e. the navigation mode, in response to the type and the duration of the current phase. Our findings reveal that the target-search efficiency increases with the particle's self-propulsion during the active phase and that, while the optimal duration of the passive case decreases monotonically with the activity, the optimal duration of the active phase displays a non-monotonic behavior.
Collapse
Affiliation(s)
- Michele Caraglio
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020, Innsbruck, Austria.
| | - Harpreet Kaur
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020, Innsbruck, Austria.
| | - Lukas J Fiderer
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020, Innsbruck, Austria.
| | - Andrea López-Incera
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020, Innsbruck, Austria.
| | - Hans J Briegel
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020, Innsbruck, Austria.
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020, Innsbruck, Austria.
| | - Gorka Muñoz-Gil
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020, Innsbruck, Austria.
| |
Collapse
|
5
|
Jose S, Rosso A, Ramola K. Generalized disorder averages and current fluctuations in run and tumble particles. Phys Rev E 2023; 108:L052601. [PMID: 38115454 DOI: 10.1103/physreve.108.l052601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023]
Abstract
We present exact results for the fluctuations in the number of particles crossing the origin up to time t in a collection of noninteracting run and tumble particles in one dimension. In contrast to passive systems, such active particles are endowed with two inherent degrees of freedom, positions and velocities, which can be used to construct density and magnetization fields. We introduce generalized disorder averages associated with both these fields and perform annealed and quenched averages over various initial conditions. We show that the variance σ^{2} of the current in annealed versus quenched magnetization situations exhibits a surprising difference at short times, σ^{2}∼t vs σ^{2}∼t^{2}, respectively, with a sqrt[t] behavior emerging at large times. Our analytical results demonstrate that in the strictly quenched scenario, where both the density and magnetization fields are initially frozen, the fluctuations in the current are strongly suppressed. Importantly, these anomalous fluctuations cannot be obtained solely by freezing the density field.
Collapse
Affiliation(s)
- Stephy Jose
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Alberto Rosso
- LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Kabir Ramola
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| |
Collapse
|
6
|
Guo W, Yan H, Chen H. Extremal statistics for a resetting Brownian motion before its first-passage time. Phys Rev E 2023; 108:044115. [PMID: 37978585 DOI: 10.1103/physreve.108.044115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023]
Abstract
We study the extreme value statistics of a one-dimensional resetting Brownian motion (RBM) till its first passage through the origin starting from the position x_{0} (>0). By deriving the exit probability of RBM in an interval [0,M] from the origin, we obtain the distribution P_{r}(M|x_{0}) of the maximum displacement M and thus gives the expected value 〈M〉 of M as functions of the resetting rate r and x_{0}. We find that 〈M〉 decreases monotonically as r increases, and tends to 2x_{0} as r→∞. In the opposite limit, 〈M〉 diverges logarithmically as r→0. Moreover, we derive the propagator of RBM in the Laplace domain in the presence of both absorbing ends, and then leads to the joint distribution P_{r}(M,t_{m}|x_{0}) of M and the time t_{m} at which this maximum is achieved in the Laplace domain by using a path decomposition technique, from which the expected value 〈t_{m}〉 of t_{m} is obtained explicitly. Interestingly, 〈t_{m}〉 shows a nonmonotonic dependence on r, and attains its minimum at an optimal r^{*}≈2.71691D/x_{0}^{2}, where D is the diffusion coefficient. Finally, we perform extensive simulations to validate our theoretical results.
Collapse
Affiliation(s)
- Wusong Guo
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
| | - Hao Yan
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
| | - Hanshuang Chen
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
7
|
Olsen KS. Steady-state moments under resetting to a distribution. Phys Rev E 2023; 108:044120. [PMID: 37978618 DOI: 10.1103/physreve.108.044120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/19/2023] [Indexed: 11/19/2023]
Abstract
The nonequilibrium steady state emerging from stochastic resetting to a distribution is studied. We show that for a range of processes, the steady-state moments can be expressed as a linear combination of the moments of the distribution of resetting positions. The coefficients of this series are universal in the sense that they do not depend on the resetting distribution, only the underlying dynamics. We consider the case of a Brownian particle and a run-and-tumble particle confined in a harmonic potential, where we derive explicit closed-form expressions for all moments for any resetting distribution. Numerical simulations are used to verify the results, showing excellent agreement.
Collapse
Affiliation(s)
- Kristian Stølevik Olsen
- Nordita, Royal Institute of Technology, and Stockholm University, Hannes Alfvéns Väg 12, 106 91 Stockholm, Sweden and Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
8
|
Wang Y, Chen H. Entropy rate of random walks on complex networks under stochastic resetting. Phys Rev E 2022; 106:054137. [PMID: 36559349 DOI: 10.1103/physreve.106.054137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Abstract
Stochastic processes under resetting at random times have attracted a lot of attention in recent years and served as illustrations of nontrivial and interesting static and dynamic features of stochastic dynamics. In this paper, we aim to address how the entropy rate is affected by stochastic resetting in discrete-time Markovian processes, and we explore nontrivial effects of the resetting in the mixing properties of a stochastic process. In particular, we consider resetting random walks (RRWs) with a single resetting node on three different types of networks: degree-regular random networks, a finite-size Cayley tree, and a Barabási-Albert (BA) scale-free network, and we compute the entropy rate as a function of the resetting probability γ. Interestingly, for the first two types of networks, the entropy rate shows a nonmonotonic dependence on γ. There exists an optimal value of γ at which the entropy rate reaches a maximum. Such a maximum is larger than that of maximal-entropy random walks (MREWs) and standard random walks (SRWs) on the same topology, while for the BA network the entropy rate of RRWs either shows a unique maximum or decreases monotonically with γ, depending upon the choice of the resetting node. When the maximum entropy rate of RRWs exists, it can be higher or lower than that of MREWs or SRWs. Our study reveals a nontrivial effect of stochastic resetting on nonequilibrium statistical physics.
Collapse
Affiliation(s)
- Yating Wang
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
| | - Hanshuang Chen
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
9
|
Chen H, Ye Y. Random walks on complex networks under time-dependent stochastic resetting. Phys Rev E 2022; 106:044139. [PMID: 36397577 DOI: 10.1103/physreve.106.044139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
We study discrete-time random walks on networks subject to a time-dependent stochastic resetting, where the walker either hops randomly between neighboring nodes with a probability 1-ϕ(a) or is reset to a given node with a complementary probability ϕ(a). The resetting probability ϕ(a) depends on the time a since the last reset event (also called a, the age of the walker). Using the renewal approach and spectral decomposition of the transition matrix, we formulate the stationary occupation probability of the walker at each node and the mean first passage time between two arbitrary nodes. Concretely, we consider two different time-dependent resetting protocols that are both exactly solvable. One is that ϕ(a) is a step-shaped function of a and the other one is that ϕ(a) is a rational function of a. We demonstrate the theoretical results on several different networks, also validated by numerical simulations, and find that the time-modulated resetting protocols can be more advantageous than the constant-probability resetting in accelerating the completion of a target search process.
Collapse
Affiliation(s)
- Hanshuang Chen
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
| | - Yanfei Ye
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
10
|
Sarkar M, Gupta S. Synchronization in the Kuramoto model in presence of stochastic resetting. CHAOS (WOODBURY, N.Y.) 2022; 32:073109. [PMID: 35907730 DOI: 10.1063/5.0090861] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
What happens when the paradigmatic Kuramoto model involving interacting oscillators of distributed natural frequencies and showing spontaneous collective synchronization in the stationary state is subject to random and repeated interruptions of its dynamics with a reset to the initial condition? While resetting to a synchronized state, it may happen between two successive resets that the system desynchronizes, which depends on the duration of the random time interval between the two resets. Here, we unveil how such a protocol of stochastic resetting dramatically modifies the phase diagram of the bare model, allowing, in particular, for the emergence of a synchronized phase even in parameter regimes for which the bare model does not support such a phase. Our results are based on an exact analysis invoking the celebrated Ott-Antonsen ansatz for the case of the Lorentzian distribution of natural frequencies and numerical results for Gaussian frequency distribution. Our work provides a simple protocol to induce global synchrony in the system through stochastic resetting.
Collapse
Affiliation(s)
- Mrinal Sarkar
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Shamik Gupta
- Department of Physics, Ramakrishna Mission Vivekananda Educational and Research Institute, Belur Math, Howrah 711202, India
| |
Collapse
|
11
|
Jose S, Mandal D, Barma M, Ramola K. Active random walks in one and two dimensions. Phys Rev E 2022; 105:064103. [PMID: 35854533 DOI: 10.1103/physreve.105.064103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
We investigate active lattice walks: biased continuous time random walks which perform orientational diffusion between lattice directions in one and two spatial dimensions. We study the occupation probability of an arbitrary site on the lattice in one and two dimensions and derive exact results in the continuum limit. Next, we compute the large deviation free-energy function in both one and two dimensions, which we use to compute the moments and the cumulants of the displacements exactly at late times. Our exact results demonstrate that the cross-correlations between the motion in the x and y directions in two dimensions persist in the large deviation function. We also demonstrate that the large deviation function of an active particle with diffusion displays two regimes, with differing diffusive behaviors. We verify our analytic results with kinetic Monte Carlo simulations of an active lattice walker in one and two dimensions.
Collapse
Affiliation(s)
- Stephy Jose
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Dipanjan Mandal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Mustansir Barma
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Kabir Ramola
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| |
Collapse
|
12
|
Chen H, Huang F. First passage of a diffusing particle under stochastic resetting in bounded domains with spherical symmetry. Phys Rev E 2022; 105:034109. [PMID: 35428076 DOI: 10.1103/physreve.105.034109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
We investigate the first passage properties of a Brownian particle diffusing freely inside a d-dimensional sphere with absorbing spherical surface subject to stochastic resetting. We derive the mean time to absorption (MTA) as functions of resetting rate γ and initial distance r of the particle to the center of the sphere. We find that when r>r_{c} there exists a nonzero optimal resetting rate γ_{opt} at which the MTA is a minimum, where r_{c}=sqrt[d/(d+4)]R and R is the radius of the sphere. As r increases, γ_{opt} exhibits a continuous transition from zero to nonzero at r=r_{c}. Furthermore, we consider that the particle lies between two two-dimensional or three-dimensional concentric spheres with absorbing boundaries, and obtain the domain in which resetting expedites the MTA, which is (R_{1},r_{c_{1}})∪(r_{c_{2}},R_{2}), with R_{1} and R_{2} being the radii of inner and outer spheres, respectively. Interestingly, when R_{1}/R_{2} is less than a critical value, γ_{opt} exhibits a discontinuous transition at r=r_{c_{1}}; otherwise, such a transition is continuous. However, at r=r_{c_{2}} the transition is always continuous.
Collapse
Affiliation(s)
- Hanshuang Chen
- School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China
| | - Feng Huang
- Key Laboratory of Advanced Electronic Materials and Devices & School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China
- Key Laboratory of Architectural Acoustic Environment of Anhui Higher Education Institutes, Hefei 230601, China
| |
Collapse
|
13
|
Gupta D, Sivak DA. Heat fluctuations in a harmonic chain of active particles. Phys Rev E 2021; 104:024605. [PMID: 34525619 DOI: 10.1103/physreve.104.024605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/10/2021] [Indexed: 11/07/2022]
Abstract
One of the major challenges in stochastic thermodynamics is to compute the distributions of stochastic observables for small-scale systems for which fluctuations play a significant role. Hitherto much theoretical and experimental research has focused on systems composed of passive Brownian particles. In this paper, we study the heat fluctuations in a system of interacting active particles. Specifically we consider a one-dimensional harmonic chain of N active Ornstein-Uhlenbeck particles, with the chain ends connected to heat baths of different temperatures. We compute the moment-generating function for the heat flow in the steady state. We employ our general framework to explicitly compute the moment-generating function for two example single-particle systems. Further, we analytically obtain the scaled cumulants for the heat flow for the chain. Numerical Langevin simulations confirm the long-time analytical expressions for first and second cumulants for the heat flow for a two-particle chain.
Collapse
Affiliation(s)
- Deepak Gupta
- Dipartimento di Fisica "G. Galilei," INFN, Università di Padova, Via Marzolo 8, 35131 Padova, Italy.,Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
14
|
Wang S, Chen H, Huang F. Random walks on complex networks with multiple resetting nodes: A renewal approach. CHAOS (WOODBURY, N.Y.) 2021; 31:093135. [PMID: 34598469 DOI: 10.1063/5.0064791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Due to wide applications in diverse fields, random walks subject to stochastic resetting have attracted considerable attention in the last decade. In this paper, we study discrete-time random walks on complex networks with multiple resetting nodes. Using a renewal approach, we derive exact expressions of the occupation probability of the walker in each node and mean first-passage time between arbitrary two nodes. All the results can be expressed in terms of the spectral properties of the transition matrix in the absence of resetting. We demonstrate our results on circular networks, stochastic block models, and Barabási-Albert scale-free networks and find the advantage of the resetting processes to multiple resetting nodes in a global search on such networks. Finally, the distribution of resetting probabilities is optimized via a simulated annealing algorithm, so as to minimize the mean first-passage time averaged over arbitrary two distinct nodes.
Collapse
Affiliation(s)
- Shuang Wang
- School of Physics Optoelectronics Engineering, Anhui University, Hefei 230601, China
| | - Hanshuang Chen
- School of Physics Optoelectronics Engineering, Anhui University, Hefei 230601, China
| | - Feng Huang
- Key Laboratory of Advanced Electronic Materials and Devices & School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China
| |
Collapse
|
15
|
Singh P, Pal A. Extremal statistics for stochastic resetting systems. Phys Rev E 2021; 103:052119. [PMID: 34134348 DOI: 10.1103/physreve.103.052119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/28/2021] [Indexed: 11/07/2022]
Abstract
While averages and typical fluctuations often play a major role in understanding the behavior of a nonequilibrium system, this nonetheless is not always true. Rare events and large fluctuations are also pivotal when a thorough analysis of the system is being done. In this context, the statistics of extreme fluctuations in contrast to the average plays an important role, as has been discussed in fields ranging from statistical and mathematical physics to climate, finance, and ecology. Herein, we study extreme value statistics (EVS) of stochastic resetting systems, which have recently gained significant interest due to its ubiquitous and enriching applications in physics, chemistry, queuing theory, search processes, and computer science. We present a detailed analysis for the finite and large time statistics of extremals (maximum and arg-maximum, i.e., the time when the maximum is reached) of the spatial displacement in such system. In particular, we derive an exact renewal formula that relates the joint distribution of maximum and arg-maximum of the reset process to the statistical measures of the underlying process. Benchmarking our results for the maximum of a reset trajectory that pertain to the Gumbel class for large sample size, we show that the arg-maximum density attains a uniform distribution independent of the underlying process at a large observation time. This emerges as a manifestation of the renewal property of the resetting mechanism. The results are augmented with a wide spectrum of Markov and non-Markov stochastic processes under resetting, namely, simple diffusion, diffusion with drift, Ornstein-Uhlenbeck process, and random acceleration process in one dimension. Rigorous results are presented for the first two setups, while the latter two are supported with heuristic and numerical analysis.
Collapse
Affiliation(s)
- Prashant Singh
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
| | - Arnab Pal
- School of Chemistry, Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
16
|
Majumdar SN, Mori F, Schawe H, Schehr G. Mean perimeter and area of the convex hull of a planar Brownian motion in the presence of resetting. Phys Rev E 2021; 103:022135. [PMID: 33736082 DOI: 10.1103/physreve.103.022135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
We compute exactly the mean perimeter and the mean area of the convex hull of a two-dimensional isotropic Brownian motion of duration t and diffusion constant D, in the presence of resetting to the origin at a constant rate r. We show that for any t, the mean perimeter is given by 〈L(t)〉=2πsqrt[D/r]f_{1}(rt) and the mean area is given by 〈A(t)〉=2πD/rf_{2}(rt) where the scaling functions f_{1}(z) and f_{2}(z) are computed explicitly. For large t≫1/r, the mean perimeter grows extremely slowly as 〈L(t)〉∝ln(rt) with time. Likewise, the mean area also grows slowly as 〈A(t)〉∝ln^{2}(rt) for t≫1/r. Our exact results indicate that the convex hull, in the presence of resetting, approaches a circular shape at late times due to the isotropy of the Brownian motion. Numerical simulations are in perfect agreement with our analytical predictions.
Collapse
Affiliation(s)
- Satya N Majumdar
- LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Francesco Mori
- LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Hendrik Schawe
- Laboratoire de Physique Théorique et Modélisation, UMR-8089 CNRS, CY Cergy Paris Université, 95510 Cergy, France
| | - Grégory Schehr
- LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|