1
|
Xu HG, Jin J, Neto GDM, de Almeida NG. Universal quantum Otto heat machine based on the Dicke model. Phys Rev E 2024; 109:014122. [PMID: 38366433 DOI: 10.1103/physreve.109.014122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/15/2023] [Indexed: 02/18/2024]
Abstract
In this paper we study a quantum Otto thermal machine where the working substance is composed of N identical qubits coupled to a single mode of a bosonic field, where the atoms and the field interact with a reservoir, as described by the so-called open Dicke model. By controlling the relevant and experimentally accessible parameters of the model we show that it is possible to build a universal quantum heat machine (UQHM) that can function as an engine, refrigerator, heater, or accelerator. The heat and work exchanges are computed taking into account the growth of the number N of atoms as well as the coupling regimes characteristic of the Dicke model for several ratios of temperatures of the two thermal reservoirs. The analysis of quantum features such as entanglement and second-order correlation shows that these quantum resources do not affect either the efficiency or the performance of the UQHM based on the open Dicke model. In addition, we show that the improvement in both efficiency and coefficient of performance of our UQHM occurs for regions around the critical value of the phase transition parameter of the model.
Collapse
Affiliation(s)
- He-Guang Xu
- School of Physics, Dalian University of Technology, 116024 Dalian, China
| | - Jiasen Jin
- School of Physics, Dalian University of Technology, 116024 Dalian, China
| | - G D M Neto
- Department of Physics, Zhejiang Normal University, Jinhua 321004, China
| | - Norton G de Almeida
- Instituto de Física, Universidade Federal de Goiás, 74.001-970, Goiânia, Goiás, Brazil
| |
Collapse
|
2
|
Damas GG, de Assis RJ, de Almeida NG. Cooling with fermionic thermal reservoirs. Phys Rev E 2023; 107:034128. [PMID: 37073057 DOI: 10.1103/physreve.107.034128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/06/2023] [Indexed: 04/20/2023]
Abstract
The quantum reservoirs commonly considered in open-quantum systems theory are those modeled by quantum harmonic oscillators, which are called bosonic reservoirs. Recently, quantum reservoirs modeled by two-level systems, the so-called fermionic reservoirs, have received attention due to their features. Given that the components of these reservoirs have a finite number of energy levels, unlike bosonic reservoirs, some studies are being carried out to explore the advantages of using this type of reservoir, especially in the operation of heat machines. In this paper, we carry out a case study of a quantum refrigerator operating in the presence of bosonic or fermionic thermal reservoirs, and we show that fermionic baths have advantages over bosonic ones.
Collapse
Affiliation(s)
- Gabriella G Damas
- Instituto de Física, Universidade Federal de Goiás, 74.001-970 Goiânia-GO, Brazil
| | - Rogério J de Assis
- Instituto de Física, Universidade Federal de Goiás, 74.001-970 Goiânia-GO, Brazil
- Departamento de Física, Universidade Federal de São Carlos, 13.565-905 São Carlos-São Paulo, Brazil
| | - Norton G de Almeida
- Instituto de Física, Universidade Federal de Goiás, 74.001-970 Goiânia-GO, Brazil
| |
Collapse
|
3
|
Zou CJ, Li Y, Xu JK, You JB, Png CE, Yang WL. Geometrical Bounds on Irreversibility in Squeezed Thermal Bath. ENTROPY (BASEL, SWITZERLAND) 2023; 25:128. [PMID: 36673269 PMCID: PMC9858152 DOI: 10.3390/e25010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Irreversible entropy production (IEP) plays an important role in quantum thermodynamic processes. Here, we investigate the geometrical bounds of IEP in nonequilibrium thermodynamics by exemplifying a system coupled to a squeezed thermal bath subject to dissipation and dephasing, respectively. We find that the geometrical bounds of the IEP always shift in a contrary way under dissipation and dephasing, where the lower and upper bounds turning to be tighter occur in the situation of dephasing and dissipation, respectively. However, either under dissipation or under dephasing, we may reduce both the critical time of the IEP itself and the critical time of the bounds for reaching an equilibrium by harvesting the benefits of squeezing effects in which the values of the IEP, quantifying the degree of thermodynamic irreversibility, also become smaller. Therefore, due to the nonequilibrium nature of the squeezed thermal bath, the system-bath interaction energy has a prominent impact on the IEP, leading to tightness of its bounds. Our results are not contradictory with the second law of thermodynamics by involving squeezing of the bath as an available resource, which can improve the performance of quantum thermodynamic devices.
Collapse
Affiliation(s)
- Chen-Juan Zou
- Research Center of Nonlinear Science, School of Mathematical and Physical Science, Wuhan Textile University, Wuhan 430200, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yue Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jia-Kun Xu
- Research Center of Nonlinear Science, School of Mathematical and Physical Science, Wuhan Textile University, Wuhan 430200, China
| | - Jia-Bin You
- Institute of High Performance Computing, Agency for Science, Technology, and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Ching Eng Png
- Institute of High Performance Computing, Agency for Science, Technology, and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Wan-Li Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
4
|
Singh V, Singh S, Abah O, Müstecaplıoğlu ÖE. Unified trade-off optimization of quantum harmonic Otto engine and refrigerator. Phys Rev E 2022; 106:024137. [PMID: 36110016 DOI: 10.1103/physreve.106.024137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
We investigate quantum Otto engine and refrigeration cycles of a time-dependent harmonic oscillator operating under the conditions of maximum Ω function, a trade-off objective function which represents a compromise between energy benefits and losses for a specific job, for both adiabatic and nonadiabatic (sudden) frequency modulations. We derive analytical expressions for the efficiency and coefficient of performance of the Otto cycle. For the case of adiabatic driving, we point out that in the low-temperature regime, the harmonic Otto engine (refrigerator) can be mapped to Feynman's ratchet and pawl model which is a steady-state classical heat engine. For the sudden switch of frequencies, we obtain loop-like behavior of the efficiency-work curve, which is characteristic of irreversible heat engines. Finally, we discuss the behavior of cooling power at maximum Ω function.
Collapse
Affiliation(s)
- Varinder Singh
- Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Satnam Singh
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Obinna Abah
- Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
- School of Mathematics, Statistics, and Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Özgür E Müstecaplıoğlu
- Department of Physics, Koç University, 34450 Sarıyer, Istanbul, Turkey
- TÜBÍTAK Research Institute for Fundamental Sciences, 41470 Gebze, Turkey
| |
Collapse
|
5
|
de Oliveira JLD, Rojas M, Filgueiras C. Two coupled double quantum-dot systems as a working substance for heat machines. Phys Rev E 2021; 104:014149. [PMID: 34412368 DOI: 10.1103/physreve.104.014149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/01/2021] [Indexed: 11/07/2022]
Abstract
This paper presents a conceptual design for quantum heat machines using a pair of coupled double quantum dots (DQDs), each DQD with an excess electron to interact, as an working substance. We define a compression ratio as the ratio between the Coulomb couplings which describes the interaction between the electrons during the isochoric processes of the quantum Otto cycle and then we analyze the arising of different regimes of operations of our thermal machine. We also show that we may change the operation mode of an Otto engine when considering the effects due to the quantum tunneling of a single electron between each individual DQD.
Collapse
Affiliation(s)
| | - Moisés Rojas
- Departamento de Física, Universidade Federal de Lavras, Caixa Postal 3037, 37200-900 Lavras-MG, Brazil
| | - Cleverson Filgueiras
- Departamento de Física, Universidade Federal de Lavras, Caixa Postal 3037, 37200-900 Lavras-MG, Brazil
| |
Collapse
|