1
|
Aboutorabi E, Baloni Ray S, Kaping D, Shahbazi F, Treue S, Esghaei M. Phase of neural oscillations as a reference frame for attention-based routing in visual cortex. Prog Neurobiol 2024; 233:102563. [PMID: 38142770 DOI: 10.1016/j.pneurobio.2023.102563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Selective attention allows the brain to efficiently process the image projected onto the retina, selectively focusing neural processing resources on behaviorally relevant visual information. While previous studies have documented the crucial role of the action potential rate of single neurons in relaying such information, little is known about how the activity of single neurons relative to their neighboring network contributes to the efficient representation of attended stimuli and transmission of this information to downstream areas. Here, we show in the dorsal visual pathway of monkeys (medial superior temporal area) that neurons fire spikes preferentially at a specific phase of the ongoing population beta (∼20 Hz) oscillations of the surrounding local network. This preferred spiking phase shifts towards a later phase when monkeys selectively attend towards (rather than away from) the receptive field of the neuron. This shift of the locking phase is positively correlated with the speed at which animals report a visual change. Furthermore, our computational modeling suggests that neural networks can manipulate the preferred phase of coupling by imposing differential synaptic delays on postsynaptic potentials. This distinction between the locking phase of neurons activated by the spatially attended stimulus vs. that of neurons activated by the unattended stimulus, may enable the neural system to discriminate relevant from irrelevant sensory inputs and consequently filter out distracting stimuli information by aligning the spikes which convey relevant/irrelevant information to distinct phases linked to periods of better/worse perceptual sensitivity for higher cortices. This strategy may be used to reserve the narrow windows of highest perceptual efficacy to the processing of the most behaviorally relevant information, ensuring highly efficient responses to attended sensory events.
Collapse
Affiliation(s)
- Ehsan Aboutorabi
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Robarts Research Institute, Western University, London, Ontario, Canada
| | - Sonia Baloni Ray
- Indraprastha Institute of Information Technology, New Delhi, India
| | - Daniel Kaping
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Farhad Shahbazi
- Department of Physics, Isfahan University of Technology, Isfahan, Iran
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany; Faculty for Biology and Psychology, University of Goettingen, Germany; Leibniz ScienceCampus Primate Cognition, Goettingen, Germany
| | - Moein Esghaei
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany; Westa Higher Education Center, Karaj, Iran.
| |
Collapse
|
2
|
Zarei M, Jahed M, Dezfouli MP, Daliri MR. Sensory representation of visual stimuli in the coupling of low-frequency phase to spike times. Brain Struct Funct 2022; 227:1641-1654. [PMID: 35106628 DOI: 10.1007/s00429-022-02460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
Neural synchronization has been engaged in several brain mechanisms. Previous studies have shown that the interaction between the time of spiking activity and phase of local field potentials (LFPs) plays a key role in many cognitive functions. However, the potential role of this spike-LFP phase coupling (SPC) in neural coding is not fully understood. Here, we sought to investigate the role of this SPC for encoding the sensory properties of visual stimuli. To this end, we measured SPC strength in the preferred and anti-preferred motion directions of stimulus presented inside the receptive field of middle temporal (MT) neurons. We found a selective response in terms of SPC strength for different directions of motion. Remarkably, this selective function is inverted with respect to the spiking activity. In other words, the least SPC occurs for the preferred direction (based on the spike rate), and vice versa; the strongest SPC is induced in the anti-preferred direction. Altogether, these findings imply that the neural system may use spike-LFP phase coupling in the primate visual cortex to encode sensory information.
Collapse
Affiliation(s)
- Mohammad Zarei
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.,School of Electrical Engineering, Sharif University of Technology (SUT), Tehran, Iran
| | - Mehran Jahed
- School of Electrical Engineering, Sharif University of Technology (SUT), Tehran, Iran.
| | - Mohsen Parto Dezfouli
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Mohammad Reza Daliri
- Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| |
Collapse
|
3
|
Zareian B, Maboudi K, Daliri MR, Abrishami Moghaddam H, Treue S, Esghaei M. Attention strengthens across-trial pre-stimulus phase coherence in visual cortex, enhancing stimulus processing. Sci Rep 2020; 10:4837. [PMID: 32179777 PMCID: PMC7076023 DOI: 10.1038/s41598-020-61359-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
Attention selectively routes the most behaviorally relevant information from the stream of sensory inputs through the hierarchy of cortical areas. Previous studies have shown that visual attention depends on the phase of oscillatory brain activities. These studies mainly focused on the stimulus presentation period, rather than the pre-stimulus period. Here, we hypothesize that selective attention controls the phase of oscillatory neural activities to efficiently process relevant information. We document an attentional modulation of pre-stimulus inter-trial phase coherence (a measure of deviation between instantaneous phases of trials) of low frequency local field potentials (LFP) in visual area MT of macaque monkeys. Our data reveal that phase coherence increases following a spatial cue deploying attention towards the receptive field of the recorded neural population. We further show that the attentional enhancement of phase coherence is positively correlated with the modulation of the stimulus-induced firing rate, and importantly, a higher phase coherence is associated with a faster behavioral response. These results suggest a functional utilization of intrinsic neural oscillatory activities for an enhanced processing of upcoming stimuli.
Collapse
Affiliation(s)
- Behzad Zareian
- Department of Psychology, University of California Riverside, Riverside, USA
| | - Kourosh Maboudi
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, USA
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran
| | - Mohammad Reza Daliri
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran
- Neuroscience and Neuroengineering Research Laboratory, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Hamid Abrishami Moghaddam
- Faculty of Electrical and Computer Engineering, Khajeh Nasir Toosi University of Technology, Tehran, Iran
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany
- Faculty of Biology and Psychology, University of Goettingen, Goettingen, Germany
- Bernstein Center for Computational Neuroscience, Goettingen, Germany
- Leibniz-ScienceCampus Primate Cognition, Goettingen, Germany
| | - Moein Esghaei
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran.
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany.
- Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|