1
|
Martinelli A, Buzzaccaro S, Galand Q, Behra J, Segers N, Leussink E, Dhillon YS, Maes D, Lutsko J, Piazza R, Cipelletti L. An advanced light scattering apparatus for investigating soft matter onboard the International Space Station. NPJ Microgravity 2024; 10:115. [PMID: 39702437 DOI: 10.1038/s41526-024-00455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
Colloidal solids (COLIS) is a state-of-the-art light scattering setup developed for experiments onboard the International Space Station (ISS). COLIS allows for probing the structure and dynamics of soft matter systems on a wide range of length scales, from a few nm to tens of microns, and on time scales from 100 ns to tens of hours. In addition to conventional static and dynamic light scattering, COLIS includes depolarized dynamic light scattering, a small-angle camera, photon correlation imaging, and optical manipulation of thermosensitive samples through an auxiliary near-infrared laser beam, thereby providing a unique platform for probing soft matter systems. We demonstrate COLIS through ground tests on standard Brownian suspensions, and on protein, colloidal glasses, and gel systems similar to those to be used in future ISS experiments.
Collapse
Affiliation(s)
| | - Stefano Buzzaccaro
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy.
| | - Quentin Galand
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
| | - Juliette Behra
- L2C, Université Montpellier, P. Bataillon, Montpellier, 34095, France
- Instrumat AG, Chemin de la Rueyre 116/118, Renens, CH-1020, Switzerland
| | - Niel Segers
- Design & Development, Redwire Space N. V., Hogenakkerhoekstraat 9, Kruibeke, 9150, Belgium
| | - Erik Leussink
- Design & Development, Redwire Space N. V., Hogenakkerhoekstraat 9, Kruibeke, 9150, Belgium
| | - Yadvender Singh Dhillon
- Design & Development, Redwire Space N. V., Hogenakkerhoekstraat 9, Kruibeke, 9150, Belgium
- School of Engineering, Macquarie University, Wallumattagal Campus, Macquarie Park, Sidney, NSW, 2109, Australia
| | - Dominique Maes
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
| | - James Lutsko
- Center for Nonlinear Phenomena and Complex Systems, CP231 and BLU-ULB Space Research Center, Université Libre de Bruxelles, Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Roberto Piazza
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Luca Cipelletti
- L2C, Université Montpellier, P. Bataillon, Montpellier, 34095, France.
- Institut Universitaire de France, 1, Rue Descartes, Paris, 75231, France.
| |
Collapse
|
2
|
Petrunin AV, Höfken T, Schneider S, Mota-Santiago P, Houston JE, Scotti A. Phase behavior of binary mixtures of hollow and regular microgels. SOFT MATTER 2024; 20:8125-8135. [PMID: 39364605 DOI: 10.1039/d4sm00862f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Soft colloids are widely used to study glass transition, aging and jamming. A high size polydispersity is typically introduced in these systems to avoid crystal formation. Here, we use binary mixtures of hollow and regular microgels with comparable sizes to inhibit crystallization. The phase behavior of the mixture is probed as a function of the number fraction of hollow microgels and characterized by small-angle X-ray scattering. Molecular dynamic simulations are used to extract the particle-particle pair potential and obtain insight on their deformation. The results suggest that the high deformability of the hollow microgels offers an alternative route to maximize the entropy without crystal formation.
Collapse
Affiliation(s)
- Alexander V Petrunin
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, EU, Germany.
| | - Tom Höfken
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, EU, Germany.
| | - Stefanie Schneider
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, EU, Germany.
| | - Pablo Mota-Santiago
- Australian Synchrotron, ANSTO, Clayton, Victoria, Australia
- MAX IV Laboratory, Lund University, P.O. Box 118, 22100 Lund, EU, Sweden
| | - Judith E Houston
- European Spallation Source ERIC, Box 176, SE-221 00 Lund, EU, Sweden
| | - Andrea Scotti
- Division of Physical Chemistry, Lund University, SE-22100 Lund, Sweden.
| |
Collapse
|
3
|
Vialetto J, Ramakrishna SN, Isa L, Laurati M. Effect of particle stiffness and surface properties on the non-linear viscoelasticity of dense microgel suspensions. J Colloid Interface Sci 2024; 672:814-823. [PMID: 38878623 DOI: 10.1016/j.jcis.2024.05.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/07/2024]
Abstract
HYPOTHESIS Particle surface chemistry and internal softness are two fundamental parameters in governing the mechanical properties of dense colloidal suspensions, dictating structure and flow, therefore of interest from materials fabrication to processing. EXPERIMENTS Here, we modulate softness by tuning the crosslinker content of poly(N-isopropylacrylamide) microgels, and we adjust their surface properties by co-polymerization with polyethylene glycol chains, controlling adhesion, friction and fuzziness. We investigate the distinct effects of these parameters on the entire mechanical response from restructuring to complete fluidization of jammed samples at varying packing fractions under large-amplitude oscillatory shear experiments, and we complement rheological data with colloidal-probe atomic force microscopy to unravel variations in the particles' surface properties. FINDINGS Our results indicate that surface properties play a fundamental role at smaller packings; decreasing adhesion and friction at contact causes the samples to yield and fluidify in a lower deformation range. Instead, increasing softness or fuzziness has a similar effect at ultra-high densities, making suspensions able to better adapt to the applied shear and reach complete fluidization over a larger deformation range. These findings shed new light on the single-particle parameters governing the mechanical response of dense suspensions subjected to deformation, offering synthetic approaches to design materials with tailored mechanical properties.
Collapse
Affiliation(s)
- Jacopo Vialetto
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy; Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland; Consorzio interuniversitario per lo sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.
| | - Shivaprakash N Ramakrishna
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Marco Laurati
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy; Consorzio interuniversitario per lo sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.
| |
Collapse
|
4
|
Höfken T, Gasser U, Schneider S, Petrunin AV, Scotti A. Real and In Silico Microgels Show Comparable Bulk Moduli Below and Above the Volume Phase Transition. Macromol Rapid Commun 2024; 45:e2400043. [PMID: 38613338 DOI: 10.1002/marc.202400043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/02/2024] [Indexed: 04/14/2024]
Abstract
The compressibility of soft colloids influences their phase behavior and flow properties, especially in concentrated suspensions. Particle compressibility, which is proportional to the reciprocal of the bulk modulus K, is a key parameter for soft polymer-based particles that can be compressed in crowded environments. Here, microgels with different degrees of cross-linking, i.e., softness, are investigated below and above their volume phase transition temperature (VPTT). By combining molecular dynamics simulations with small-angle neutron scattering with contrast variation, a change in the particle bulk moduli of two orders of magnitude is observed. The degree of cross-linking has a significant impact on the bulk modulus of the swollen microgel, while above the VPTT the values of K are almost independent of the cross-linking density. The excellent agreement between experimental results and simulations also highlight that the model microgels from computer simulations possess both the internal architecture and the elastic properties of real polymeric networks. This paves the way to a systematic use of simulations to investigate the behavior of dense microgel suspensions below and above their VPTT.
Collapse
Affiliation(s)
- Tom Höfken
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Urs Gasser
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, Villigen, 5232, Switzerland
| | - Stefanie Schneider
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Alexander V Petrunin
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Andrea Scotti
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, SE-205 06, Sweden
- Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, SE-205 06, Sweden
| |
Collapse
|
5
|
Gerelli Y, Camerin F, Bochenek S, Schmidt MM, Maestro A, Richtering W, Zaccarelli E, Scotti A. Softness matters: effects of compression on the behavior of adsorbed microgels at interfaces. SOFT MATTER 2024; 20:3653-3665. [PMID: 38623629 DOI: 10.1039/d4sm00235k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Deformable colloids and macromolecules adsorb at interfaces as they decrease the interfacial energy between the two media. The deformability, or softness, of these particles plays a pivotal role in the properties of the interface. In this study, we employ a comprehensive in situ approach, combining neutron reflectometry with molecular dynamics simulations, to thoroughly examine the profound influence of softness on the structure of microgel Langmuir monolayers under compression. Lateral compression of both hard and soft microgel particle monolayers induces substantial structural alterations, leading to an amplified protrusion of the microgels into the aqueous phase. However, a critical distinction emerges: hard microgels are pushed away from the interface, in stark contrast to the soft ones, which remain firmly anchored to it. Concurrently, on the air-exposed side of the monolayer, lateral compression induces a flattening of the surface of the hard monolayer. This phenomenon is not observed for the soft particles as the monolayer is already extremely flat even in the absence of compression. These findings significantly advance our understanding of the key role of softness on both the equilibrium phase behavior of the monolayer and its effect when soft colloids are used as stabilizers of responsive interfaces and emulsions.
Collapse
Affiliation(s)
- Yuri Gerelli
- Italian National Research Council - Institute for Complex Systems (CNR-ISC) and Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy.
| | - Fabrizio Camerin
- Division of Physical Chemistry, Lund University, P. O. Box 124, SE-22100 Lund, Sweden.
| | - Steffen Bochenek
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Maximilian M Schmidt
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Armando Maestro
- Centro de Física de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Emanuela Zaccarelli
- Italian National Research Council - Institute for Complex Systems (CNR-ISC) and Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy.
| | - Andrea Scotti
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden.
- Biofilms - Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden
| |
Collapse
|
6
|
Hildebrandt M, Pham Thuy D, Kippenberger J, Wigger TL, Houston JE, Scotti A, Karg M. Fluid-solid transitions in photonic crystals of soft, thermoresponsive microgels. SOFT MATTER 2023; 19:7122-7135. [PMID: 37695048 DOI: 10.1039/d3sm01062g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Microgels are often discussed as well-suited model system for soft colloids. In contrast to rigid spheres, the microgel volume and, coupled to this, the volume fraction in dispersion can be manipulated by external stimuli. This behavior is particularly interesting at high packings where phase transitions can be induced by external triggers such as temperature in the case of thermoresponsive microgels. A challenge, however, is the determination of the real volume occupied by these deformable, soft objects and consequently, to determine the boundaries of the phase transitions. Here we propose core-shell microgels with a rigid silica core and a crosslinked, thermoresponsive poly-N-isopropylacrylamide (PNIPAM) shell with a carefully chosen shell-to-core size ratio as ideal model colloids to study fluid-solid transitions that are inducible by millikelvin changes in temperature. Specifically, we identify the temperature ranges where crystallization and melting occur using absorbance spectroscopy in a range of concentrations. Slow annealing from the fluid to the crystalline state leads to photonic crystals with Bragg peaks in the visible wavelength range and very narrow linewidths. Small-angle X-ray scattering is then used to confirm the structure of the fluid phase as well as the long-range order, crystal structure and microgel volume fraction in the solid phase. Thanks to the scattering contrasts and volume ratio of the cores with respect to the shells, the scattering data do allow for form factor analysis revealing osmotic deswelling at volume fractions approaching and also exceeding the hard sphere packing limit.
Collapse
Affiliation(s)
- M Hildebrandt
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| | - D Pham Thuy
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| | - J Kippenberger
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| | - T L Wigger
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| | - J E Houston
- European Spallation Source ERIC, Box 176, SE-221 00 Lund, Sweden
| | - A Scotti
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - M Karg
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
7
|
Petrunin AV, Schmidt MM, Schweins R, Houston JE, Scotti A. Self-Healing of Charged Microgels in Neutral and Charged Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37220302 DOI: 10.1021/acs.langmuir.2c03054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The softness of microgels depends on many aspects, such as particle characteristic lengths, sample concentration, chemical composition of the sample, and elastic moduli of the particle. Here, the response to crowding of ionic microgels is studied. Charged and uncharged ionic microgels are studied in concentrated suspensions of both neutral and ionic microgels with the same swollen size. The combination of small-angle X-ray and neutron scattering with contrast variation allows us to probe both the particle-to-particle arrangement and the response of individual ionic microgels to crowding. When the ionic microgels are uncharged, initial isotropic deswelling followed by faceting is observed. Therefore, the ionizable groups in the polymeric network do not affect the response of the ionic microgel to crowding, which is similar to what has been reported for neutral microgels. In contrast, the kind of microgels composing the matrix plays a key role once the ionic microgels are charged. If the matrix is composed of neutral microgels, a pronounced faceting and negligible deswelling is observed. When only charged ionic microgels are present in the suspension, isotropic deswelling without faceting is dominant.
Collapse
Affiliation(s)
- Alexander V Petrunin
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany
| | - Maximilian M Schmidt
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany
| | - Ralf Schweins
- Institut Laue-Langevin ILL, DS/LSS, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Judith E Houston
- European Spallation Source ERIC, Box 176, SE-221 00 Lund, Sweden
| | - Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany
| |
Collapse
|
8
|
Nickel AC, Denton AR, Houston JE, Schweins R, Plivelic TS, Richtering W, Scotti A. Beyond simple self-healing: How anisotropic nanogels adapt their shape to their environment. J Chem Phys 2022; 157:194901. [DOI: 10.1063/5.0119527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The response of soft colloids to crowding depends sensitively on the particles’ compressibility. Nanogel suspensions provide model systems that are often studied to better understand the properties of soft materials and complex fluids from the formation of colloidal crystals to the flow of viruses, blood, or platelet cells in the body. Large spherical nanogels, when embedded in a matrix of smaller nanogels, have the unique ability to spontaneously deswell to match their size to that of the nanogel composing the matrix. In contrast to hard colloids, this self-healing mechanism allows for crystal formation without giving rise to point defects or dislocations. Here, we show that anisotropic ellipsoidal nanogels adapt both their size and their shape depending on the nature of the particles composing the matrix in which they are embedded. Using small-angle neutron scattering with contrast variation, we show that ellipsoidal nanogels become spherical when embedded in a matrix of spherical nanogels. In contrast, the anisotropy of the ellipsoid is enhanced when they are embedded in a matrix of anisotropic nanogels. Our experimental data are supported by Monte Carlo simulations that reproduce the trend of decreasing aspect ratio of ellipsoidal nanogels with increasing crowding by a matrix of spherical nanogels.
Collapse
Affiliation(s)
- Anne C. Nickel
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Alan R. Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| | | | - Ralf Schweins
- Institut Laue-Langevin ILL DS/LSS, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Tomàs S. Plivelic
- MAX IV Laboratory, Lund University, P.O. Box 118, 22100 Lund, Sweden
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
9
|
Vialetto J, Ramakrishna SN, Isa L. In situ imaging of the three-dimensional shape of soft responsive particles at fluid interfaces by atomic force microscopy. SCIENCE ADVANCES 2022; 8:eabq2019. [PMID: 36351021 PMCID: PMC9645722 DOI: 10.1126/sciadv.abq2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/23/2022] [Indexed: 05/09/2023]
Abstract
The reconfiguration of individual soft and deformable particles upon adsorption at a fluid interface underpins many aspects of their dynamics and interactions, ultimately regulating the properties of monolayers of relevance for applications. In this work, we demonstrate that atomic force microscopy can be used for the in situ reconstruction of the three-dimensional conformation of model poly(N-isopropylacrylamide) microgels adsorbed at an oil-water interface. We image the particle topography from both sides of the interface to characterize its in-plane deformation and to visualize the occurrence of asymmetric swelling in the two fluids. In addition, the technique enables investigating different fluid phases and particle architectures, as well as studying the effect of temperature variations on particle conformation in situ. We envisage that these results open up an exciting range of possibilities to provide microscopic insights into the single-particle behavior of soft objects at fluid interfaces and into the resulting macroscopic material properties.
Collapse
Affiliation(s)
| | | | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
10
|
Scotti A, Gasser U, Petrunin AV, Fruhner L, Richtering W, Houston JE. Experimental determination of the bulk moduli of hollow nanogels. SOFT MATTER 2022; 18:5750-5758. [PMID: 35899831 DOI: 10.1039/d2sm00680d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The softness of an object can be quantified by one of the fundamental elastic moduli. The bulk modulus of the particle is most appropriate in the presence of isotropic compressions. Here, we use small-angle neutron scattering with contrast variation to directly access the bulk modulus of polymeric nanocapsules - pNIPAM-based hollow nanogels. We show that the size of the cavity is the most important quantity that determines the softness of hollow nanogels. During initial compression, the polymer collapses into the cavity and leads to a large change in the particle volume, resulting in a very small initial bulk modulus. Once the cavity is partially occupied by the polymer, the hollow nanogels become significantly stiffer since now the highly crosslinked network has to be compressed. Furthermore, we show that the larger the cavity, the softer the nanogel.
Collapse
Affiliation(s)
- Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany.
| | - Urs Gasser
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | | | - Lisa Fruhner
- Forschungszentrum Jülich GmbH Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information processing (IBI-8), 52425 Jülich, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany.
| | - Judith E Houston
- European Spallation Source ERIC, Box 176, SE-221 00 Lund, Sweden
| |
Collapse
|
11
|
Houston JE, Fruhner L, de la Cotte A, Rojo González J, Petrunin AV, Gasser U, Schweins R, Allgaier J, Richtering W, Fernandez-Nieves A, Scotti A. Resolving the different bulk moduli within individual soft nanogels using small-angle neutron scattering. SCIENCE ADVANCES 2022; 8:eabn6129. [PMID: 35776796 PMCID: PMC10883365 DOI: 10.1126/sciadv.abn6129] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The bulk modulus, K, quantifies the elastic response of an object to an isotropic compression. For soft compressible colloids, knowing K is essential to accurately predict the suspension response to crowding. Most colloids have complex architectures characterized by different softness, which additionally depends on compression. Here, we determine the different values of K for the various morphological parts of individual nanogels and probe the changes of K with compression. Our method uses a partially deuterated polymer, which exerts the required isotropic stress, and small-angle neutron scattering with contrast matching to determine the form factor of the particles without any scattering contribution from the polymer. We show a clear difference in softness, compressibility, and evolution of K between the shell of the nanogel and the rest of the particle, depending on the amount of cross-linker used in their synthesis.
Collapse
Affiliation(s)
| | - Lisa Fruhner
- Forschungszentrum Jülich GmbH Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information Processing (IBI-8), 52425 Jülich, Germany
| | - Alexis de la Cotte
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
| | - Javier Rojo González
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
| | | | - Urs Gasser
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Ralf Schweins
- Institut Laue-Langevin ILL DS/LSS, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Jürgen Allgaier
- Forschungszentrum Jülich GmbH Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information Processing (IBI-8), 52425 Jülich, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
- JARA-SOFT, 52056 Aachen, Germany
| | - Alberto Fernandez-Nieves
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
- ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona, Spain
| | - Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
12
|
Bochenek S, Camerin F, Zaccarelli E, Maestro A, Schmidt MM, Richtering W, Scotti A. In-situ study of the impact of temperature and architecture on the interfacial structure of microgels. Nat Commun 2022; 13:3744. [PMID: 35768399 PMCID: PMC9243037 DOI: 10.1038/s41467-022-31209-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
The structural characterization of microgels at interfaces is fundamental to understand both their 2D phase behavior and their role as stabilizers that enable emulsions to be broken on demand. However, this characterization is usually limited by available experimental techniques, which do not allow a direct investigation at interfaces. To overcome this difficulty, here we employ neutron reflectometry, which allows us to probe the structure and responsiveness of the microgels in-situ at the air-water interface. We investigate two types of microgels with different cross-link density, thus having different softness and deformability, both below and above their volume phase transition temperature, by combining experiments with computer simulations of in silico synthesized microgels. We find that temperature only affects the portion of microgels in water, while the strongest effect of the microgels softness is observed in their ability to protrude into the air. In particular, standard microgels have an apparent contact angle of few degrees, while ultra-low cross-linked microgels form a flat polymeric layer with zero contact angle. Altogether, this study provides an in-depth microscopic description of how different microgel architectures affect their arrangements at interfaces, and will be the foundation for a better understanding of their phase behavior and assembly.
Collapse
Affiliation(s)
- Steffen Bochenek
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Fabrizio Camerin
- CNR-ISC, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Roma, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Roma, Italy
| | - Emanuela Zaccarelli
- CNR-ISC, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Roma, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Roma, Italy
| | - Armando Maestro
- Institut Laue-Langevin ILL DS/LSS, 71 Avenue des Martyrs, 38000, Grenoble, France
- Centro de Fısica de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018, San Sebastián, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| | - Maximilian M Schmidt
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany.
| |
Collapse
|
13
|
Scotti A, Schulte MF, Lopez CG, Crassous JJ, Bochenek S, Richtering W. How Softness Matters in Soft Nanogels and Nanogel Assemblies. Chem Rev 2022; 122:11675-11700. [PMID: 35671377 DOI: 10.1021/acs.chemrev.2c00035] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Softness plays a key role in determining the macroscopic properties of colloidal systems, from synthetic nanogels to biological macromolecules, from viruses to star polymers. However, we are missing a way to quantify what the term "softness" means in nanoscience. Having quantitative parameters is fundamental to compare different systems and understand what the consequences of softness on the macroscopic properties are. Here, we propose different quantities that can be measured using scattering methods and microscopy experiments. On the basis of these quantities, we review the recent literature on micro- and nanogels, i.e. cross-linked polymer networks swollen in water, a widely used model system for soft colloids. Applying our criteria, we address the question what makes a nanomaterial soft? We discuss and introduce general criteria to quantify the different definitions of softness for an individual compressible colloid. This is done in terms of the energetic cost associated with the deformation and the capability of the colloid to isotropically deswell. Then, concentrated solutions of soft colloids are considered. New definitions of softness and new parameters, which depend on the particle-to-particle interactions, are introduced in terms of faceting and interpenetration. The influence of the different synthetic routes on the softness of nanogels is discussed. Concentrated solutions of nanogels are considered and we review the recent results in the literature concerning the phase behavior and flow properties of nanogels both in three and two dimensions, in the light of the different parameters we defined. The aim of this review is to look at the results on micro- and nanogels in a more quantitative way that allow us to explain the reported properties in terms of differences in colloidal softness. Furthermore, this review can give researchers dealing with soft colloids quantitative methods to define unambiguously which softness matters in their compound.
Collapse
Affiliation(s)
- Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - M Friederike Schulte
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Carlos G Lopez
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Jérôme J Crassous
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Steffen Bochenek
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| |
Collapse
|
14
|
Höfken T, Strauch C, Schneider S, Scotti A. Changes in the Form Factor and Size Distribution of Nanogels in Crowded Environments. NANO LETTERS 2022; 22:2412-2418. [PMID: 35258981 DOI: 10.1021/acs.nanolett.2c00120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Particle size disparities suppress crystallization. However, soft deformable nanogels can change the size of the larger particles in suspension and crystallize even at a high initial size-polydispersity. Using neutron scattering with contrast variation, the response of individual nanogels in crowded environments was probed, and an increase of the parameter describing size-polydispersity was found, which is often interpreted as deformation. Here, computer simulations are used to generate deformed nanogels and the corresponding form factor. The data are fitted with the spherical model used to analyze scattering data. The fits show the same qualitative increase of the parameter related to the size-polydispersity with increasing particle deformation. Starting from the simulated deformed spheres, we also reproduce experimental scattering data. A further analysis of the particle shows that the size disparities between nanogels do not increase significantly. In contrast, their shapes strongly vary from one nanogel to the other.
Collapse
Affiliation(s)
- Tom Höfken
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Christian Strauch
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Stefanie Schneider
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
15
|
Schulte MF, Izak-Nau E, Braun S, Pich A, Richtering W, Göstl R. Microgels react to force: mechanical properties, syntheses, and force-activated functions. Chem Soc Rev 2022; 51:2939-2956. [PMID: 35319064 DOI: 10.1039/d2cs00011c] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microgels are colloidal polymer networks with high molar mass and properties between rigid particles, flexible macromolecules, and micellar aggregates. Their unique stimuli-responsiveness in conjunction with their colloidal phase behavior render them useful for many applications ranging from engineering to biomedicine. In many scenarios either the microgel's mechanical properties or its interactions with mechanical force play an important role. Here, we firstly explain microgel mechanical properties and how these are measured by atomic force microscopy (AFM), then we equip the reader with the synthetic background to understand how specific architectures and chemical functionalities enable these mechanical properties, and eventually we elucidate how the interaction of force with microgels can lead to the activation of latent functionality. Since the interaction of microgels with force is a multiscale and multidisciplinary subject, we introduce and interconnect the different research areas that contribute to the understanding of this emerging field in this Tutorial Review.
Collapse
Affiliation(s)
- M Friederike Schulte
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| | - Emilia Izak-Nau
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany.
| | - Susanne Braun
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany. .,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Andrij Pich
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany. .,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.,Maastricht University, Aachen Maastricht Institute for Biobased Materials (AMIBM), Brightlands Chemelot Campus, 6167 RD Geleen, The Netherlands
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| | - Robert Göstl
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany.
| |
Collapse
|
16
|
Islam MR, Nguyen R, Lyon LA. Emergence of Non-Hexagonal Crystal Packing of Deswollen and Deformed Ultra-Soft Microgels under Osmotic Pressure Control. Macromol Rapid Commun 2021; 42:e2100372. [PMID: 34491600 PMCID: PMC8542600 DOI: 10.1002/marc.202100372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/31/2021] [Indexed: 11/11/2022]
Abstract
Highly solvent swollen poly(N-isopropylacrylamide-co-acrylic acid) microgels are synthesized without exogenous crosslinker, making them extremely soft and deformable. These ultralow crosslinked microgels (ULC) are incubated under controlled osmotic pressure to provide a slow (and presumably thermodynamically controlled) approach to higher packing densities. It is found that ULC microgels show stable colloidal packing over a very wide range of osmotic pressures and thus packing densities. Surprising observation of co-existence between hexagonal and square lattices is also made over the lower range of studied osmotic pressures, with microgels apparently changing shape from spheres to cubes in defects or grain boundaries. It is proposed that the unusual packing behavior observed for ULC microgels is due to the extreme softness of these particles, where deswelling causes deformation and shrinking of the particles that result in unique packing states governed by contributions to the entropy at the colloidal system, single particle and ionic levels. These observations further suggest that more detailed experimental and theoretical studies of ultra-soft microgels are required to obtain a complete understanding of their behavior in packed and confined geometries.
Collapse
Affiliation(s)
- Molla R Islam
- Schmid College of Science and Technology, Chapman University, Orange, CA, 92780, USA
| | - Rachel Nguyen
- Schmid College of Science and Technology, Chapman University, Orange, CA, 92780, USA
| | - Louis Andrew Lyon
- Dale E. and Sarah Ann Fowler School of Engineering, Chapman University, Orange, CA, 92866, USA
| |
Collapse
|
17
|
Scotti A. Characterization of the volume fraction of soft deformable microgels by means of small-angle neutron scattering with contrast variation. SOFT MATTER 2021; 17:5548-5559. [PMID: 33978056 DOI: 10.1039/d1sm00277e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The volume occupied by colloids in a suspension - namely the volume fraction - is the thermodynamic variable that determines the phase behavior of these systems. While for hard incompressible spheres this quantity is well defined, for soft compressible colloids such as microgels - polymeric crosslinked networks swollen in a good solvent - the determination of the real volume occupied by these particles in solution is particularly challenging. This fact depends on two aspects: first the surface and, therefore, the volume of the microgels is hard to define properly given their external fuzziness; second, microgels can osmotically deswell, deform or interpenetrate their neighbors, i.e. change their shape and size depending on the solution concentration. Here, the form factors of few hydrogenated microgels embedded in a matrix of deuterated but otherwise identical microgels are measured using small-angle neutron scattering with contrast variation. From the analysis of the scattering data, the variation of the volume of the microgels as a function of concentration is obtained and used to calculate the real microgel volume fraction in solution. Soft neutral microgels are shown to facet already at low concentrations while in contrast, harder microgels maintain their shape and change their volume.
Collapse
Affiliation(s)
- Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, 52056, Aachen, Germany.
| |
Collapse
|
18
|
Hannappel Y, Wiehemeier L, Dirksen M, Kottke T, Hellweg T. Smart Microgels from Unconventional Acrylamides. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yvonne Hannappel
- Physical and Biophysical Chemistry Bielefeld University Universitätsstr. 25 33615 Bielefeld Germany
| | - Lars Wiehemeier
- Physical and Biophysical Chemistry Bielefeld University Universitätsstr. 25 33615 Bielefeld Germany
| | - Maxim Dirksen
- Physical and Biophysical Chemistry Bielefeld University Universitätsstr. 25 33615 Bielefeld Germany
| | - Tilman Kottke
- Physical and Biophysical Chemistry Bielefeld University Universitätsstr. 25 33615 Bielefeld Germany
| | - Thomas Hellweg
- Physical and Biophysical Chemistry Bielefeld University Universitätsstr. 25 33615 Bielefeld Germany
| |
Collapse
|
19
|
Scotti A, Denton AR, Brugnoni M, Schweins R, Richtering W. Absence of crystals in the phase behavior of hollow microgels. Phys Rev E 2021; 103:022612. [PMID: 33736081 DOI: 10.1103/physreve.103.022612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 01/29/2021] [Indexed: 05/20/2023]
Abstract
Solutions of microgels have been widely used as model systems to gain insight into atomic condensed matter and complex fluids. We explore the thermodynamic phase behavior of hollow microgels, which are distinguished from conventional colloids by a central cavity. Small-angle neutron and x-ray scattering are used to probe hollow microgels in crowded environments. These measurements reveal an interplay among deswelling, interpenetration, and faceting and an unusual absence of crystals. Monte Carlo simulations of model systems confirm that, due to the cavity, solutions of hollow microgels more readily form a supercooled liquid than for microgels with a cross-linked core.
Collapse
Affiliation(s)
- A Scotti
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - A R Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050 USA
| | - M Brugnoni
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - R Schweins
- Institut Laue-Langevin ILL DS/LSS, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - W Richtering
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|