Trulsson M. Directional shear jamming of frictionless ellipses.
Phys Rev E 2021;
104:044614. [PMID:
34781452 DOI:
10.1103/physreve.104.044614]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/22/2021] [Indexed: 11/07/2022]
Abstract
In this work we study shear reversals of dense non-Brownian suspensions composed of cohesionless elliptical particles. By numerical simulations, we show that a new fragility appears for frictionless ellipses in the flowing states, where particles can flow indefinitely in one direction at applied shear stresses but shear jam in the other direction upon shear stress reversal. This new fragility, absent in the isotropic particle case, is linked to the directional order of the elongated particles at steady shear and its reorientation at shear stress reversal, which forces the suspensions to pass through a more disordered state with an increased number of contacts in which it might get arrested.
Collapse