1
|
Zhang L, Feng Y, Li L, Li S, Yuan B, Han X, He Z. Droplet impact dynamics on the surface of super-hydrophobic BNNTs stainless steel mesh. Sci Rep 2024; 14:27695. [PMID: 39532942 PMCID: PMC11557963 DOI: 10.1038/s41598-024-75825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
The 'gas‒liquid‒solid' mechanism annealing method was used to create a superhydrophobic boron nitride nanotube (BNNT) stainless steel mesh in a tube furnace at 1250 °C in an NH3 environment. Fe powder was used as a catalyst, and B:B2O3 = 4:1 was used as the raw material. The water droplets on the surface of the superhydrophobic material had a contact angle of approximately 150° and a slide angle of approximately 3°. By using molecular dynamics (MD) simulation technology, a three-dimensional braided physical model of nanodroplets and superhydrophobic BNNT mesh surfaces with the same contact angle and rolling angle was prepared via the function weaving method. The Weber number (We) was used as the entrance point to establish the relationship between macroscale experimental studies and nanoscale MD simulation analysis on the basis of these efforts. A study was conducted on the dynamic behaviour of droplets impacting a superhydrophobic BNNT filter surface. We suggest that the wettability, substrate structure, and impact velocity are connected to the impact dynamic behaviour of droplets on the basis of the data obtained at various scales. The findings demonstrate that when the droplet impact velocity increases, several droplet phenomena-such as impact-rebound, impact-spread-rebound, and impact-spread-breaking-polymerisation-spatter-appear on the substrate surface sequentially. The mechanism of impact behaviour at various scales is explained in light of these events. Furthermore, a better theoretical model is proposed to assess the droplet wetting transition at the nanoscale. This model accurately predicts the boundary Weber number that starts the wetting transition. Moreover, the connections among the impact velocity, spreading diameter, and contact time (or We) are examined. The tendencies found via MD simulations match the outcomes of the experiments. Our discoveries and outcomes broaden our understanding of how droplet impact affects the dynamic behaviour of superhydrophobic surfaces. A scientific foundation for examining the dynamic behaviour of droplets is provided by combining simulations and experiments.
Collapse
Affiliation(s)
- Lie Zhang
- Rocket Force University of Engineering, Xi'an, 710025, Shaanxi, China
| | - Yongbao Feng
- Rocket Force University of Engineering, Xi'an, 710025, Shaanxi, China.
| | - Liang Li
- Rocket Force University of Engineering, Xi'an, 710025, Shaanxi, China
| | - Shuzhi Li
- Rocket Force University of Engineering, Xi'an, 710025, Shaanxi, China
| | - Bo Yuan
- Rocket Force University of Engineering, Xi'an, 710025, Shaanxi, China
| | - Xiaoxia Han
- Rocket Force University of Engineering, Xi'an, 710025, Shaanxi, China
| | - Zhenxin He
- Rocket Force University of Engineering, Xi'an, 710025, Shaanxi, China
| |
Collapse
|
2
|
Perumanath S, Chubynsky MV, Pillai R, Borg MK, Sprittles JE. Rolling and Sliding Modes of Nanodroplet Spreading: Molecular Simulations and a Continuum Approach. PHYSICAL REVIEW LETTERS 2023; 131:164001. [PMID: 37925699 DOI: 10.1103/physrevlett.131.164001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 05/11/2023] [Accepted: 08/15/2023] [Indexed: 11/07/2023]
Abstract
Molecular simulations discover a new mode of dynamic wetting that manifests itself in the very earliest stages of spreading, after a droplet contacts a solid. The observed mode is a "rolling" type of motion, characterized by a contact angle lower than the classically assumed value of 180°, and precedes the conventional "sliding" mode of spreading. This motivates the development of a novel continuum framework that captures all modes of motion, allows the dominant physical mechanisms to be understood, and permits the study of larger droplets.
Collapse
Affiliation(s)
- Sreehari Perumanath
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Mykyta V Chubynsky
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
- Centre for Fluid and Complex Systems, Coventry University, Coventry, CV1 5FB, United Kingdom
| | - Rohit Pillai
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, United Kingdom
| | - Matthew K Borg
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, United Kingdom
| | - James E Sprittles
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
3
|
MacDowell LG. Surface tension of bulky colloids, capillarity under gravity, and the microscopic origin of the Kardar-Parisi-Zhang equation. Phys Rev E 2023; 108:L022801. [PMID: 37723748 DOI: 10.1103/physreve.108.l022801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/26/2023] [Indexed: 09/20/2023]
Abstract
Experimental measurements of the surface tension of colloidal interfaces have long been in conflict with computer simulations. In this Letter we show that the surface tension of colloids as measured by surface fluctuations picks up a gravity-dependent contribution which removes the discrepancy. The presence of this term puts a strong constraint on the structure of the interface which allows one to identify corrections to the fundamental equation of equilibrium capillarity and deduce bottom up the microscopic origin of a growth model with close relation to the Kardar-Parisi-Zhang equation.
Collapse
Affiliation(s)
- Luis G MacDowell
- Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
Liu H, Zhang J, Luo J, Wen D. Impact of nanodroplets on cone-textured surfaces. Phys Rev E 2023; 107:065101. [PMID: 37464703 DOI: 10.1103/physreve.107.065101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/10/2023] [Indexed: 07/20/2023]
Abstract
Molecular dynamics simulations have been performed to study the dynamics of nanodroplets impacting on a flat superhydrophobic surface and surfaces covered with nanocone structures. We present a panorama of nanodroplet behaviors for a wide range of impact velocities and different cone geometrics, and develop a model to predict whether a nanodroplet impacting onto cone-textured surfaces will touch the underlying substrate during impact. The advantages and disadvantages of applying nanocone structures to the solid surface are revealed by the investigations into restitution coefficient and contact time. The effects of nanocone structures on droplet bouncing dynamics are probed using momentum analysis rather than conventional energy analysis. We further demonstrate that a single Weber number is inadequate for unifying the dynamics of macroscale and nanoscale droplets on cone-textured surfaces, and propose a combined dimensionless number to address it. The extensive findings of this study carry noteworthy implications for engineering applications, such as nanoprinting and nanomedicine on functional patterned surfaces, providing fundamental support for these technologies.
Collapse
Affiliation(s)
- Hanyi Liu
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| | - Jun Zhang
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| | - Jia Luo
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| | - Dongsheng Wen
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
- TUM School of Engineering and Design, Technical University of Munich, 80333 Munich, Germany
| |
Collapse
|
5
|
Liu J, Zhao C, Lockerby DA, Sprittles JE. Thermal capillary waves on bounded nanoscale thin films. Phys Rev E 2023; 107:015105. [PMID: 36797965 DOI: 10.1103/physreve.107.015105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
The effect of confining walls on the fluctuation of a nanoscale thin film's free surface is studied using stochastic thin-film equations (STFEs). Two canonical boundary conditions are employed to reveal the influence of the confinement: (1) an imposed contact angle and (2) a pinned contact line. A linear stability analysis provides the wave eigenmodes, after which thermal-capillary-wave theory predicts the wave fluctuation amplitudes. Molecular dynamics (MD) simulations are performed to test the predictions, and a Langevin diffusion model is proposed to capture oscillations of the contact lines observed in MD simulations. Good agreement between the theoretical predictions and the MD simulation results is recovered, and it is discovered that confinement can influence the entire film. Notably, a constraint on the length scale of wave modes is found to affect fluctuation amplitudes from our theoretical model, especially for 3D films. This opens up challenges and future lines of inquiry.
Collapse
Affiliation(s)
- Jingbang Liu
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Chengxi Zhao
- Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| | - Duncan A Lockerby
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - James E Sprittles
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
6
|
Tomo Y, Nag S, Takamatsu H. Observation of Interfacial Instability of an Ultrathin Water Film. PHYSICAL REVIEW LETTERS 2022; 128:144502. [PMID: 35476498 DOI: 10.1103/physrevlett.128.144502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/06/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
We observed the instability of a few-nanometer-thick water film encapsulated inside a graphene nanoscroll using transmission electron microscopy. The film, that was left after recession of a meniscus, formed ripples along the length of the nanoscroll with a distance only 20%-44% of that predicted by the classical Plateau-Rayleigh instability theory. The results were explained by a theoretical analysis that incorporates the effect of the van der Waals interactions between the water film and the graphene layers. We derived important insights into the behavior of liquid under nanoscale confinement and in nanofluidic systems.
Collapse
Affiliation(s)
- Yoko Tomo
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Sarthak Nag
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| | - Hiroshi Takamatsu
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Zitz S, Scagliarini A, Harting J. Lattice Boltzmann simulations of stochastic thin film dewetting. Phys Rev E 2021; 104:034801. [PMID: 34654097 DOI: 10.1103/physreve.104.034801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/11/2021] [Indexed: 11/07/2022]
Abstract
We study numerically the effect of thermal fluctuations and of variable fluid-substrate interactions on the spontaneous dewetting of thin liquid films. To this aim, we use a recently developed lattice Boltzmann method for thin liquid film flows, equipped with a properly devised stochastic term. While it is known that thermal fluctuations yield shorter rupture times, we show that this is a general feature of hydrophilic substrates, irrespective of the contact angle θ. The ratio between deterministic and stochastic rupture times, though, decreases with θ. Finally, we discuss the case of fluctuating thin film dewetting on chemically patterned substrates and its dependence on the form of the wettability gradients.
Collapse
Affiliation(s)
- S Zitz
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich, Fürther Strasse 248, 90429 Nürnberg, Germany.,Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fürther Straße 248, 90429 Nürnberg, Germany
| | - A Scagliarini
- Institute for Applied Mathematics "M. Picone" (IAC), Consiglio Nazionale delle Ricerche (CNR), Via dei Taurini 19, 00185 Rome, Italy.,INFN, sezione Roma "Tor Vergata", via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - J Harting
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich, Fürther Strasse 248, 90429 Nürnberg, Germany.,Department of Chemical and Biological Engineering and Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fürther Straße 248, 90429 Nürnberg, Germany
| |
Collapse
|
8
|
Zhang Y, Lockerby DA, Sprittles JE. Relaxation of Thermal Capillary Waves for Nanoscale Liquid Films on Anisotropic-Slip Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8667-8676. [PMID: 34251820 DOI: 10.1021/acs.langmuir.1c00352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The relaxation dynamics of thermal capillary waves for nanoscale liquid films on anisotropic-slip substrates are investigated using both molecular dynamics (MD) simulations and a Langevin model. The anisotropy of slip on substrates is achieved using a specific lattice plane of a face-centered cubic lattice. This surface's anisotropy breaks the simple scalar proportionality between slip velocity and wall shear stress and requires the introduction of a slip-coefficient tensor. The Langevin equation can describe both the growth of capillary wave spectra and the relaxation of capillary wave correlations, with the former providing a time scale for the surface to reach thermal equilibrium. Temporal correlations of interfacial Fourier modes, measured at thermal equilibrium in MD, demonstrate that (i) larger slip lengths lead to a faster decay in wave correlations and (ii) unlike isotropic-slip substrates, the time correlations of waves on anisotropic-slip substrates are wave-direction-dependent. These findings emerge naturally from the proposed Langevin equation, which becomes wave-direction-dependent, agrees well with MD results, and allows us to produce experimentally verifiable predictions.
Collapse
Affiliation(s)
- Yixin Zhang
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Duncan A Lockerby
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - James E Sprittles
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|