1
|
Pihlajamaa I, Janssen LMC. Comparison of integral equation theories of the liquid state. Phys Rev E 2024; 110:044608. [PMID: 39562907 DOI: 10.1103/physreve.110.044608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/18/2024] [Indexed: 11/21/2024]
Abstract
The Ornstein-Zernike equation is a powerful tool in liquid state theory for predicting structural and thermodynamic properties of fluids. Combined with a suitable closure, it has been shown to reproduce, e.g., the static structure factor, pressure, and compressibility of liquids to a great degree of accuracy. However, out of the multitude of closures that exist for the Ornstein-Zernike equation, it is hard to predict a priori which closure will give the most accurate predictions for the system at hand. To alleviate this problem, we compare the predictive power of many closures on a curated set of representative benchmark systems, including those with hard-sphere, inverse power-law, Gaussian core, and Lennard-Jones particles, in three and two dimensions. For example, we find that the well-known and highly used Percus-Yevick closure gives significantly worse predictions than lesser-known closures of equal complexity in all cases studied. We anticipate that the trends observed in our results will aid in making more informed decisions regarding closure choices. To facilitate the adoption of more modern closure theories, we also have packaged, documented, and distributed the code necessary to numerically solve the equations for a given closure and pair interaction potential.
Collapse
|
2
|
Zhu R, Wang Y. A critical edge number revealed for phase stabilities of two-dimensional ball-stick polygons. Nat Commun 2024; 15:6389. [PMID: 39080314 PMCID: PMC11289400 DOI: 10.1038/s41467-024-50796-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Phase behaviours of two-dimensional (2D) systems constitute a fundamental topic in condensed matter and statistical physics. Although hard polygons and interactive point-like particles are well studied, the phase behaviours of more realistic molecular systems considering intermolecular interaction and molecular shape remain elusive. Here we investigate by molecular dynamics simulation phase stabilities of 2D ball-stick polygons, serving as simplified models for molecular systems. Below the melting temperature Tm, we identify a critical edge numbern c = 4 , at which a distorted square lattice emerges; when n < n c , the triangular system stabilizes at a spin-ice-like glassy state; when n > n c , the polygons stabilize at crystalline states. Moreover, in the crystalline state, Tm is higher for polygons with more edges at higher pressures but exhibits a crossover for hexagon and octagon at low pressures. A theoretical framework taking into account the competition between entropy and enthalpy is proposed to provide a comprehensive understanding of our results, which is anticipated to facilitate the design of 2D materials.
Collapse
Affiliation(s)
- Ruijian Zhu
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 55 East Zhongguancun Road, P. O. Box 2735, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Yanting Wang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 55 East Zhongguancun Road, P. O. Box 2735, 100190, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China.
| |
Collapse
|
3
|
Caporusso CB, Gonnella G, Levis D. Phase Coexistence and Edge Currents in the Chiral Lennard-Jones Fluid. PHYSICAL REVIEW LETTERS 2024; 132:168201. [PMID: 38701478 DOI: 10.1103/physrevlett.132.168201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/21/2023] [Accepted: 03/15/2024] [Indexed: 05/05/2024]
Abstract
We study a model chiral fluid in two dimensions composed of Brownian disks interacting via a Lennard-Jones potential and a nonconservative transverse force, mimicking colloids spinning at a given rate. The system exhibits a phase separation between a chiral liquid and a dilute gas phase that can be characterized using a thermodynamic framework. We compute the equations of state and show that the surface tension controls interface corrections to the coexisting pressure predicted from the equal-area construction. Transverse forces increase surface tension and generate edge currents at the liquid-gas interface. The analysis of these currents shows that the rotational viscosity introduced in chiral hydrodynamics is consistent with microscopic bulk mechanical measurements. Chirality can also break the solid phase, giving rise to a dense fluid made of rotating hexatic patches. Our Letter paves the way for the development of the statistical mechanics of chiral particles assemblies.
Collapse
Affiliation(s)
- Claudio B Caporusso
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari and INFN Sezione di Bari, via Amendola 173 Bari 70126 Italy
| | - Giuseppe Gonnella
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari and INFN Sezione di Bari, via Amendola 173 Bari 70126 Italy
| | - Demian Levis
- Departament de Física de la Matèria Condensada, Universitat de Barcelona C. Martí Franquès, 1 08028 Barcelona Spain
- UBICS University of Barcelona Institute of Complex Systems Martí i Franquès, 1 E08028 Barcelona Spain
| |
Collapse
|
4
|
Nishikawa Y, Krauth W, Maggs AC. Liquid-hexatic transition for soft disks. Phys Rev E 2023; 108:024103. [PMID: 37723788 DOI: 10.1103/physreve.108.024103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/28/2023] [Indexed: 09/20/2023]
Abstract
We study the liquid-hexatic transition of soft disks with massively parallel simulations and determine the equation of state as a function of system size. For systems with interactions decaying as the inverse mth power of the separation, the liquid-hexatic phase transition is continuous for m=12 and m=8, while it is of first order for m=24. The critical power m for the transition between continuous and first-order behavior is larger than previously reported. The continuous transition for m=12 implies that the two-dimensional Lennard-Jones model has a continuous liquid-hexatic transition at high temperatures. We also study the Weeks-Chandler-Andersen model and find a continuous transition at high temperatures that is consistent with the soft-disk case for m=12. Pressure data as well as our implementation are available from an open-source repository.
Collapse
Affiliation(s)
- Yoshihiko Nishikawa
- Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
| | - Werner Krauth
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris Cité, 75005 Paris, France
| | - A C Maggs
- CNRS UMR7083, ESPCI Paris, Université PSL, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
5
|
Hrishikesh B, Mani E. Collective behavior of passive and active circle swimming particle mixtures. SOFT MATTER 2023; 19:225-232. [PMID: 36510815 DOI: 10.1039/d2sm01066f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We present a numerical study on a binary mixture of passive and circle swimming, self-propelling particles which interact via the Lennard-Jones (LJ) potential in two dimensions. Using Brownian Dynamics (BD) simulations, we present state diagrams using the control parameters such as attraction strength, angular velocity, self-propulsion velocity and composition. In a symmetric mixture, the system undergoes a transition from a mixed gel to a rotating passive cluster state and finally to a homogeneous fluid state as translational activity increases. The formation of the rotating cluster of passive particles surrounded by active and passive monomers is attributed to the combined effect of composition, activity and strength of attraction of the active particles. Different phases are characterized using radial distribution functions, bond order parameters, cluster fraction and probability distribution of local volume fractions. The present study addresses comprehensively the intricate role of activity, angular velocity, inter-particle interaction and compositional variation on the phase behavior. The predictions presented in the study can be experimentally realized in synthetic colloidal swimmers and motile bacterial suspensions.
Collapse
Affiliation(s)
- Bhadra Hrishikesh
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India.
| | - Ethayaraja Mani
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India.
| |
Collapse
|
6
|
Yao Z. Collective dynamics and shattering of disturbed two-dimensional Lennard-Jones crystals. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:88. [PMID: 36318346 DOI: 10.1140/epje/s10189-022-00243-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Elucidating collective dynamics in crystalline systems is a common scientific question in multiple fields. In this work, by combination of high-precision numerical approach and analytical normal mode analysis, we systematically investigate the dynamical response of two-dimensional Lennard-Jones crystal as a purely classical mechanical system under random disturbance of varying strength, and reveal rich microscopic dynamics. Specifically, we observe highly symmetric velocity field composed of sharply divided coherent and disordered regions, and identify the order-disorder dynamical transition of the velocity field. Under stronger disturbance, we reveal the vacancy-driven shattering of the crystal. This featured disruption mode is fundamentally different from the dislocation-unbinding scenario in two-dimensional melting. We also examine the healing dynamics associated with vacancies of varying size. The results in this work advance our understanding about the formation of collective dynamics and crystal disruption, and may have implications in elucidating relevant non-equilibrium behaviors in a host of crystalline systems. Microscopic dynamics and underlying topological defects in the disruption of the Lennard-Jones lattice under random disturbance.
Collapse
Affiliation(s)
- Zhenwei Yao
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
7
|
Torquato S, Wang H. Precise determination of pair interactions from pair statistics of many-body systems in and out of equilibrium. Phys Rev E 2022; 106:044122. [PMID: 36397532 DOI: 10.1103/physreve.106.044122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The determination of the pair potential v(r) that accurately yields an equilibrium state at positive temperature T with a prescribed pair correlation function g_{2}(r) or corresponding structure factor S(k) in d-dimensional Euclidean space R^{d} is an outstanding inverse statistical mechanics problem with far-reaching implications. Recently, Zhang and Torquato [Phys. Rev. E 101, 032124 (2020)2470-004510.1103/PhysRevE.101.032124] conjectured that any realizable g_{2}(r) or S(k) corresponding to a translationally invariant nonequilibrium system can be attained by a classical equilibrium ensemble involving only (up to) effective pair interactions. Testing this conjecture for nonequilibrium systems as well as for nontrivial equilibrium states requires improved inverse methodologies. We have devised an optimization algorithm to precisely determine effective pair potentials that correspond to pair statistics of general translationally invariant disordered many-body equilibrium or nonequilibrium systems at positive temperatures. This methodology utilizes a parameterized family of pointwise basis functions for the potential function whose initial form is informed by small-, intermediate- and large-distance behaviors dictated by statistical-mechanical theory. Subsequently, a nonlinear optimization technique is utilized to minimize an objective function that incorporates both the target pair correlation function g_{2}(r) and structure factor S(k) so that the small intermediate- and large-distance correlations are very accurately captured. To illustrate the versatility and power of our methodology, we accurately determine the effective pair interactions of the following four diverse target systems: (1) Lennard-Jones system in the vicinity of its critical point, (2) liquid under the Dzugutov potential, (3) nonequilibrium random sequential addition packing, and (4) a nonequilibrium hyperuniform "cloaked" uniformly randomized lattice. We found that the optimized pair potentials generate corresponding pair statistics that accurately match their corresponding targets with total L_{2}-norm errors that are an order of magnitude smaller than that of previous methods. The results of our investigation lend further support to the Zhang-Torquato conjecture. Furthermore, our algorithm will enable one to probe systems with identical pair statistics but different higher-body statistics, which will shed light on the well-known degeneracy problem of statistical mechanics.
Collapse
Affiliation(s)
- Salvatore Torquato
- Department of Chemistry, Department of Physics, Princeton Institute of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
- School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, New Jersey 08540, USA
| | - Haina Wang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
8
|
Tsiok EN, Fomin YD, Gaiduk EA, Tareyeva EE, Ryzhov VN, Libet PA, Dmitryuk NA, Kryuchkov NP, Yurchenko SO. The role of attraction in the phase diagrams and melting scenarios of generalized 2D Lennard-Jones systems. J Chem Phys 2022; 156:114703. [DOI: 10.1063/5.0075479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Monolayer and two-dimensional (2D) systems exhibit rich phase behavior, compared with 3D systems, in particular, due to the hexatic phase playing a central role in melting scenarios. The attraction range is known to affect critical gas–liquid behavior (liquid–liquid in protein and colloidal systems), but the effect of attraction on melting in 2D systems remains unstudied systematically. Here, we have revealed how the attraction range affects the phase diagrams and melting scenarios in a 2D system. Using molecular dynamics simulations, we have considered the generalized Lennard-Jones system with a fixed repulsion branch and different power indices of attraction from long-range dipolar to short-range sticky-sphere-like. A drop in the attraction range has been found to reduce the temperature of the gas–liquid critical point, bringing it closer to the gas–liquid–solid triple point. At high temperatures, attraction does not affect the melting scenario that proceeds through the cascade of solid–hexatic (Berezinskii–Kosterlitz–Thouless) and hexatic–liquid (first-order) phase transitions. In the case of dipolar attraction, we have observed two triple points inherent in a 2D system: hexatic–liquid–gas and crystal–hexatic–gas, the temperature of the crystal–hexatic–gas triple point is below the hexatic–liquid–gas triple point. This observation may have far-reaching consequences for future studies, since phase diagrams determine possible routes of self-assembly in molecular, protein, and colloidal systems, whereas the attraction range can be adjusted with complex solvents and external electric or magnetic fields. The results obtained may be widely used in condensed matter, chemical physics, materials science, and soft matter.
Collapse
Affiliation(s)
- Elena N. Tsiok
- Institute of High Pressure Physics RAS, Kaluzhskoe Shosse, 14, Troitsk, Moscow 108840, Russia
| | - Yuri D. Fomin
- Institute of High Pressure Physics RAS, Kaluzhskoe Shosse, 14, Troitsk, Moscow 108840, Russia
| | - Eugene A. Gaiduk
- Institute of High Pressure Physics RAS, Kaluzhskoe Shosse, 14, Troitsk, Moscow 108840, Russia
| | - Elena E. Tareyeva
- Institute of High Pressure Physics RAS, Kaluzhskoe Shosse, 14, Troitsk, Moscow 108840, Russia
| | - Valentin N. Ryzhov
- Institute of High Pressure Physics RAS, Kaluzhskoe Shosse, 14, Troitsk, Moscow 108840, Russia
| | - Pavel A. Libet
- Institute of High Pressure Physics RAS, Kaluzhskoe Shosse, 14, Troitsk, Moscow 108840, Russia
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Nikita A. Dmitryuk
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Nikita P. Kryuchkov
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Stanislav O. Yurchenko
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| |
Collapse
|
9
|
Tendong E, Saha-Dasgupta T, Chakrabarti J. Viscoelastic response of fluid trapped between two dissimilar van der Waals surfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:195101. [PMID: 35144244 DOI: 10.1088/1361-648x/ac53d8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Employing grand canonical Monte-Carlo and molecular dynamics simulations, the viscoelastic response of trapped fluid under molecularly thin confinement by walls having different wall-fluid interaction strengths, is investigated. With increase in slit asymmetry, given by the ratio of interaction strengths of the wall having strong wall-fluid interaction to that of the wall with weak wall-fluid interaction, a crossover in effective density of the fluid film, from rarer (R) to denser (D) than the bulk density is observed. Upon increasing asymmetry further, the dense fluid (F) layers undergo bond-orientational (S) ordering. The variation of viscoelastic relaxation time with scaled asymmetry shows a universal behavior, independent of slit width, with two distinct regimes. Below a critical value of asymmetry, the viscoelastic relaxation time is a slowly varying function of asymmetry, comparable with the structural relaxation time. Beyond the critical asymmetry, on the other hand, viscoelastic response time shows a sharp increase upon increasing asymmetry, deviating markedly from the structural relaxation time. Interestingly the critical asymmetry value is found to correlate with R to D crossover. The microscopic origin of the two-regime universal behavior of viscoelastic response time is found to stem from the fact that below critical asymmetry, the overall viscoelastic behaviour of the slit is dominated by that of the fast relaxing layer close to the weakly attracting surface, while above the critical asymmetry, the relaxation behaviour is guided by the dense fluid layer adjacent to the strongly attracting wall. In vicinity of fluid to ordering transition, the loss and storage moduli merge for low frequencies as in gel-like mechanical behaviour. The storage modulus takes over the loss modulus in the phase co-existence region even before the long ranged order sets in. Our findings bear important implications for fluid transport in hetero-structured geometry in nanotechnology.
Collapse
Affiliation(s)
- E Tendong
- Department of Condensed Matter Physics and Material Sciences, S.N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata-700106, India
| | - T Saha-Dasgupta
- Department of Condensed Matter Physics and Material Sciences, Thematic Unit of Excellence for Material Science & Technology Research Centre, S.N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata-700106, India
| | - J Chakrabarti
- Department of Chemical Biological and Macromoleculer Sciences, Thematic Unit of Excellence for Material Science & Technology Research Centre, S.N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata-700106, India
| |
Collapse
|
10
|
Digregorio P, Levis D, Cugliandolo LF, Gonnella G, Pagonabarraga I. Unified analysis of topological defects in 2D systems of active and passive disks. SOFT MATTER 2022; 18:566-591. [PMID: 34928290 DOI: 10.1039/d1sm01411k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We provide a comprehensive quantitative analysis of localized and extended topological defects in the steady state of 2D passive and active repulsive Brownian disk systems. We show that, both in and out-of-equilibrium, the passage from the solid to the hexatic is driven by the unbinding of dislocations, in quantitative agreement with the KTHNY singularity. Instead, extended clusters of defects largely dominate below the solid-hexatic critical line. The latter percolate in the liquid phase very close to the hexatic-liquid transition, both for continuous and discontinuous transitions, in the homogeneous liquid regime. At critical percolation the clusters of defects are fractal with statistical and geometric properties that are independent of the activity and compatible with the universality class of uncorrelated critical percolation. We also characterize the spatial organization of point-like defects and we show that the disclinations are not free, but rather always very near more complex defect structures. At high activity, the bulk of the dense phase generated by Motility-Induced Phase Separation is characterized by a density of point-like defects, and statistics and morphology of defect clusters, set by the amount of activity and not the packing fraction. Hexatic domains within the dense phase are separated by grain-boundaries along which a finite network of topological defects resides, interrupted by gas bubbles in cavitation. This structure is dynamic in the sense that the defect network allows for an unzipping mechanism that leaves free space for gas bubbles to appear, close, and even be released into the dilute phase.
Collapse
Affiliation(s)
- Pasquale Digregorio
- Centre Européen de Calcul Atomique et Moléculaire (CECAM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochimie, Avenue Forel 2, 1015 Lausanne, Switzerland
| | - Demian Levis
- Departament de Fisica de la Materia Condensada, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona, Spain
- UBICS University of Barcelona Institute of Complex Systems, Martí i Franquès 1, E08028 Barcelona, Spain
| | - Leticia F Cugliandolo
- Laboratoire de Physique Théorique et Hautes Energies, Sorbonne Université, CNRS UMR 7589, 4 Place Jussieu, 75252 Paris Cedex 05, France
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
| | - Giuseppe Gonnella
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy
| | - Ignacio Pagonabarraga
- Centre Européen de Calcul Atomique et Moléculaire (CECAM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochimie, Avenue Forel 2, 1015 Lausanne, Switzerland
- Departament de Fisica de la Materia Condensada, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona, Spain
- UBICS University of Barcelona Institute of Complex Systems, Martí i Franquès 1, E08028 Barcelona, Spain
| |
Collapse
|
11
|
Guo J, Nie Y, Xu N. Signatures of continuous hexatic-liquid transition in two-dimensional melting. SOFT MATTER 2021; 17:3397-3403. [PMID: 33645612 DOI: 10.1039/d0sm02199g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent studies have shown that the melting of two-dimensional crystals can be either continuous or discontinuous, relying on multiple parameters such as particle stiffness, density, and particle size dispersity. However, what determines the continuity or discontinuity of the two-dimensional melting remains elusive. Here we study the two-dimensional melting of binary mixtures of soft-core particles. The two particle species are different in either particle size or particle stiffness. Starting with the mono-component systems which exhibit discontinuous hexatic-liquid transition, we gradually increase the particle size or stiffness dispersity and find that the hexatic-liquid coexistent region shrinks and eventually vanishes above a critical dispersity. Therefore, the growth of disorder caused by the particle size or stiffness dispersity leads to the discontinuous-continuous transition of the two-dimensional melting. We further find that as long as the melting is continuous the defect concentrations on the boundary between hexatic and liquid phases remain almost constant, accompanied by an almost constant correlation length. These characteristic defect concentrations and correlation length are universal and independent of particle interactions, temperature, and type of particle dispersity, which act as signatures of the continuous two-dimensional melting.
Collapse
Affiliation(s)
- Jialing Guo
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Microscale Magnetic Resonance and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China.
| | | | | |
Collapse
|