1
|
Pei JH, Chen JF, Quan HT. Exploring quasiprobability approaches to quantum work in the presence of initial coherence: Advantages of the Margenau-Hill distribution. Phys Rev E 2023; 108:054109. [PMID: 38115414 DOI: 10.1103/physreve.108.054109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/09/2023] [Indexed: 12/21/2023]
Abstract
In quantum thermodynamics, the two-projective-measurement (TPM) scheme provides a successful description of stochastic work only in the absence of initial quantum coherence. Extending the quantum work distribution to quasiprobability is a general way to characterize work fluctuation in the presence of initial coherence. However, among a large number of different definitions, there is no consensus on the most appropriate work quasiprobability. In this article, we list several physically reasonable requirements including the first law of thermodynamics, time-reversal symmetry, positivity of second-order moment, and a support condition for the work distribution. We prove that the only definition that satisfies all these requirements is the Margenau-Hill (MH) quasiprobability of work. In this sense, the MH quasiprobability of work shows its advantages over other definitions. As an illustration, we calculate the MH work distribution of a breathing harmonic oscillator with initial squeezed states and show the convergence to classical work distribution in the classical limit.
Collapse
Affiliation(s)
- Ji-Hui Pei
- School of Physics, Peking University, Beijing 100871, China
| | - Jin-Fu Chen
- School of Physics, Peking University, Beijing 100871, China
| | - H T Quan
- School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Das A, Mahunta S, Agarwalla BK, Mukherjee V. Precision bound and optimal control in periodically modulated continuous quantum thermal machines. Phys Rev E 2023; 108:014137. [PMID: 37583225 DOI: 10.1103/physreve.108.014137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/07/2023] [Indexed: 08/17/2023]
Abstract
We use Floquet formalism to study fluctuations in periodically modulated continuous quantum thermal machines. We present a generic theory for such machines, followed by specific examples of sinusoidal, optimal, and circular modulations, respectively. The thermodynamic uncertainty relations (TUR) hold for all modulations considered. Interestingly, in the case of sinusoidal modulation, the TUR ratio assumes a minimum at the heat engine to refrigerator transition point, while the chopped random basis optimization protocol allows us to keep the ratio small for a wide range of modulation frequencies. Furthermore, our numerical analysis suggests that TUR can show signatures of heat engine to refrigerator transition, for more generic modulation schemes. We also study bounds in fluctuations in the efficiencies of such machines; our results indicate that fluctuations in efficiencies are bounded from above for a refrigerator and from below for an engine. Overall, this study emphasizes the crucial role played by different modulation schemes in designing practical quantum thermal machines.
Collapse
Affiliation(s)
- Arpan Das
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5/7, 87-100 Toruń, Poland
| | - Shishira Mahunta
- Department of Physical Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur 760010, India
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research Pune, Pune 411008, India
| | - Victor Mukherjee
- Department of Physical Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur 760010, India
| |
Collapse
|
3
|
Kaneyasu M, Hasegawa Y. Quantum Otto cycle under strong coupling. Phys Rev E 2023; 107:044127. [PMID: 37198760 DOI: 10.1103/physreve.107.044127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 05/19/2023]
Abstract
Quantum heat engines are often discussed under the weak-coupling assumption that the interaction between the system and the reservoirs is negligible. Although this setup is easier to analyze, this assumption cannot be justified on the quantum scale. In this study, a quantum Otto cycle model that can be generally applied without the weak-coupling assumption is proposed. We replace the thermalization process in the weak-coupling model with a process comprising thermalization and decoupling. The efficiency of the proposed model is analytically calculated and indicates that, when the contribution of the interaction terms is neglected in the weak-interaction limit, it reduces to that of the earlier model. The sufficient condition for the efficiency of the proposed model not to surpass that of the weak-coupling model is that the decoupling processes of our model have a positive cost. Moreover, the relation between the interaction strength and the efficiency of the proposed model is numerically examined by using a simple two-level system. Furthermore, we show that our model's efficiency can surpass that of the weak-coupling model under particular cases. From analyzing the majorization relation, we also find a design method of the optimal interaction Hamiltonians, which are expected to provide the maximum efficiency of the proposed model. Under these interaction Hamiltonians, the numerical experiment shows that the proposed model achieves higher efficiency than that of its weak-coupling counterpart.
Collapse
Affiliation(s)
- Mao Kaneyasu
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
López-Alamilla NJ, Cachi RUL. Virial-like thermodynamic uncertainty relation in the tight-binding regime. CHAOS (WOODBURY, N.Y.) 2022; 32:103109. [PMID: 36319277 DOI: 10.1063/5.0107554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
We presented a methodology to approximate the entropy production for Brownian motion in a tilted periodic potential. The approximation stems from the well known thermodynamic uncertainty relation. By applying a virial-like expansion, we provided a tighter lower limit solely in terms of the drift velocity and diffusion. The approach presented is systematically analyzed in the tight-binding regime. We also provide a relative simple rule to validate using the tight-binding approach based on drift and diffusion relations rather than energy barriers and forces. We also discuss the implications of our results outside the tight-binding regime.
Collapse
Affiliation(s)
- N J López-Alamilla
- Department of Physics, University of Otago, P. O. Box 56, Dunedin 9054, New Zealand
| | - R U L Cachi
- Department of Chemistry, KU Leuven, Leuven 3001, Belgium
| |
Collapse
|
5
|
López-Alamilla NJ, Cachi RUL. A model of minimal entropy generation for cytoskeletal transport systems with multiple interacting motors. Biophys Chem 2022; 288:106853. [PMID: 35753181 DOI: 10.1016/j.bpc.2022.106853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/29/2022] [Accepted: 06/11/2022] [Indexed: 11/30/2022]
Abstract
We study the steady-state rate of entropy generation for multiple interacting particles. The description used is based on the partially asymmetric exclusion process in a lattice with periodic boundary conditions. Our methodology shows that in the steady-state, the rate of entropy generation is directly proportional to the bulk drift and the applied driving force. Since in many cases the driving force is unknown or hard to determine. We circumvent this by deriving a lower bound for the entropy, resulting in an extended thermodynamic uncertainty relation for the asymmetric simple exclusion process. We systematically compared this bound with the actual entropy generation. Thus, we identify the force regimes, and particles' density conditions where the entropy bound derived from this extended thermodynamic uncertainty relation is meaningful.
Collapse
Affiliation(s)
| | - R U L Cachi
- Department of Physics, University of Otago, Dunedin, New Zealand; Department of Chemistry, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Van Vu T, Saito K. Thermodynamics of Precision in Markovian Open Quantum Dynamics. PHYSICAL REVIEW LETTERS 2022; 128:140602. [PMID: 35476476 DOI: 10.1103/physrevlett.128.140602] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The thermodynamic and kinetic uncertainty relations indicate trade-offs between the relative fluctuation of observables and thermodynamic quantities such as dissipation and dynamical activity. Although these relations have been well studied for classical systems, they remain largely unexplored in the quantum regime. In this Letter, we investigate such trade-off relations for Markovian open quantum systems whose underlying dynamics are quantum jumps, such as thermal processes and quantum measurement processes. Specifically, we derive finite-time lower bounds on the relative fluctuation of both dynamical observables and their first passage times for arbitrary initial states. The bounds imply that the precision of observables is constrained not only by thermodynamic quantities but also by quantum coherence. We find that the product of the relative fluctuation and entropy production or dynamical activity is enhanced by quantum coherence in a generic class of dissipative processes of systems with nondegenerate energy levels. Our findings provide insights into the survival of the classical uncertainty relations in quantum cases.
Collapse
Affiliation(s)
- Tan Van Vu
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Keiji Saito
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
7
|
Saryal S, Agarwalla BK. Bounds on fluctuations for finite-time quantum Otto cycle. Phys Rev E 2021; 103:L060103. [PMID: 34271746 DOI: 10.1103/physreve.103.l060103] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/04/2021] [Indexed: 11/07/2022]
Abstract
For quantum Otto engine driven quasistatically, we provide exact full statistics of heat and work for a class of working fluids that follow a scale-invariant energy eigenspectra under driving. Equipped with the full statistics we go on to derive a universal expression for the ratio of nth cumulant of output work and input heat in terms of the mean Otto efficiency. Furthermore, for nonadiabatic driving of quantum Otto engine with working fluid consisting of either a (i) qubit or (ii) a harmonic oscillator, we show that the relative fluctuation of output work is always greater than the corresponding relative fluctuation of input heat absorbed from the hot bath. As a result, the ratio between the work fluctuation and the input heat fluctuation receives a lower bound in terms of the square value of the average efficiency of the engine. The saturation of the lower bound is received in the quasistatic limit of the engine.
Collapse
Affiliation(s)
- Sushant Saryal
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Ward No. 8, NCL Colony, Pashan, Pune, Maharashtra 411008, India
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Ward No. 8, NCL Colony, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|