1
|
Dwivedi M, Singh SL, Kumar S. Polymer translocation: effects of periodically driven confinement. SOFT MATTER 2024; 20:2455-2463. [PMID: 38379387 DOI: 10.1039/d3sm01313h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
We study the influence of confinement on the dynamics of translocation of a linear polymer chain in a good solvent through a cone-shaped pore. Using the Langevin dynamics simulations, we calculate both the first attempt time and translocation time as a function of the position of the back wall and apex angle α. As the in vivo confining environment is inherently dynamic, we extended the present study to explore the consequences of a periodically driven back wall and apex angles on the translocation dynamics. Our findings reveal that the translocation time initially decreases as the driving frequency increases, but increases after a certain frequency. The frequency at which the translocation time is found to be minimum is referred to as the resonance activation. Analyzing the distribution of translocation times around this frequency renders interesting information about the translocation process. We further explore the translocation dynamics by calculating the residence time of individual monomers, shedding light on the microscopic aspects of the process.
Collapse
Affiliation(s)
- Manish Dwivedi
- Department of Physics, Banaras Hindu University, Varanasi 221005, India.
| | - Swarn Lata Singh
- Physics Section, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Sanjay Kumar
- Department of Physics, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Dwivedi M, Rudra S, Kumar S. Polymer translocation: Effects of confinement. Phys Rev E 2024; 109:024412. [PMID: 38491574 DOI: 10.1103/physreve.109.024412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/24/2024] [Indexed: 03/18/2024]
Abstract
We investigate the influence of varying confinement on the dynamics of polymer translocation through a cone-shaped channel. For this, a linear polymer chain is modeled using self-avoiding walks on a square lattice. The cis side of a cone-shaped channel has a finite volume, while the trans side has a semi-infinite space. The confining environment is varied either by changing the position of the back wall while keeping the apex angle fixed or altering the apex angle while keeping the position of the back wall fixed. In both cases, the effective space ϕ, which represents the number of monomers in a chain relative to the total number of accessible sites within the cone, is reduced due to the imposed confinement. Consequently, the translocation dynamics are affected. We analyze the entropy of the confined system as a function of ϕ, which exhibits nonmonotonic behavior. We also calculate the free energy associated with the confinement as a function of a virtual coordinate for different positions of the back wall (base of the cone) along the conical axis for various apex angles. Employing the Fokker-Planck equation, we calculate the translocation time as a function of ϕ for different solvent conditions across the channel. Our findings indicate that the translocation time decreases as ϕ increases, but it eventually reaches a saturation point at a certain value of ϕ. Moreover, we highlight the possibility of controlling the translocation dynamics by manipulating the solvent quality across the channel. Furthermore, our investigation delves into the intricacies of polymer translocation through a cone-shaped channel, considering both repulsive and neutral interactions with the channel wall. This exploration unveils nuanced dynamics and sheds light on the factors that significantly impact translocation within confined channels.
Collapse
Affiliation(s)
- Manish Dwivedi
- Department of Physics, Banaras Hindu University, Varanasi 221005, India
| | - Sumitra Rudra
- Department of Physics, Banaras Hindu University, Varanasi 221005, India
| | - Sanjay Kumar
- Department of Physics, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
3
|
Singh SL, Chauhan K, Bharadwaj AS, Kishore V, Laux P, Luch A, Singh AV. Polymer Translocation and Nanopore Sequencing: A Review of Advances and Challenges. Int J Mol Sci 2023; 24:6153. [PMID: 37047125 PMCID: PMC10094227 DOI: 10.3390/ijms24076153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
Various biological processes involve the translocation of macromolecules across nanopores; these pores are basically protein channels embedded in membranes. Understanding the mechanism of translocation is crucial to a range of technological applications, including DNA sequencing, single molecule detection, and controlled drug delivery. In this spirit, numerous efforts have been made to develop polymer translocation-based sequencing devices, these efforts include findings and insights from theoretical modeling, simulations, and experimental studies. As much as the past and ongoing studies have added to the knowledge, the practical realization of low-cost, high-throughput sequencing devices, however, has still not been realized. There are challenges, the foremost of which is controlling the speed of translocation at the single monomer level, which remain to be addressed in order to use polymer translocation-based methods for sensing applications. In this article, we review the recent studies aimed at developing control over the dynamics of polymer translocation through nanopores.
Collapse
Affiliation(s)
- Swarn Lata Singh
- Department of Physics, Mahila Mahavidyalaya (MMV), Banaras Hindu University, Varanasi 221005, UP, India
| | - Keerti Chauhan
- Department of Physics, Banaras Hindu University, Varanasi 221005, UP, India
| | - Atul S. Bharadwaj
- Department of Physics, CMP Degree College, University of Allahabad, Prayagraj 211002, UP, India
| | - Vimal Kishore
- Department of Physics, Banaras Hindu University, Varanasi 221005, UP, India
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR) Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR) Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR) Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
4
|
Chauhan K, Singh A. Delayed collapse transitions in a pinned polymer system. Phys Rev E 2022; 105:064505. [PMID: 35854509 DOI: 10.1103/physreve.105.064505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/05/2022] [Indexed: 11/07/2022]
Abstract
Employing Langevin dynamics simulations, we investigated the kinetics of the collapse transition for a polymer of length N when a particular monomer at a position 1≤X≤N is pinned. The results are compared with the kinetics of a free polymer. The equilibrium θ-point separating the coil from the globule phase is located by a crossover in 〈R_{g}^{2}〉/N plots of different chain lengths. Our simulation supports a three-stage mechanism for free and pinned polymer collapse: the formation of pearls, the coarsening of pearls, and the formation of a compact globule. Pinning the central monomer has negligible effects on the kinetics as it does not break the symmetry. However, pinning a monomer elsewhere causes the process to be delayed by a constant factor ϕ_{X} depending linearly upon X. The total collapse time scales with N as τ_{c}∼ϕ_{X}N^{1.60±0.03}, which implies τ_{c} is maximum when an end monomer is pinned (X=1 or N), while when pinning the central monomer (X=N/2) it is minimum and identical to that of a free polymer. The average cluster size N_{c}(t) grows in time as t^{z}, where z=1.00±0.04 for a free particle, whereas we identify two time regimes separated by a plateau for pinned polymers. At longer times, z=1.00±0.04, while it deviates in early time regimes significantly, depending on the value of X.
Collapse
Affiliation(s)
- Keerti Chauhan
- Department of Physics, Banaras Hindu University, Varanasi 221005, India
| | - Ankit Singh
- Department of Physics, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
5
|
Chhetri KB, Dasgupta C, Maiti PK. Diameter Dependent Melting and Softening of dsDNA Under Cylindrical Confinement. Front Chem 2022; 10:879746. [PMID: 35586267 PMCID: PMC9108266 DOI: 10.3389/fchem.2022.879746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Carbon nanotubes (CNTs) are considered promising candidates for biomolecular confinement, including DNA encapsulation for gene delivery. Threshold values of diameters have been reported for double-stranded DNA (dsDNA) encapsulation inside CNTs. We have performed all-atom molecular dynamics (MD) simulations of dsDNAs confined inside single-walled CNTs (SWCNTs) at the physiologically relevant temperature of 300 K. We found that the dsDNA can be confined without being denatured only when the diameter of the SWCNT exceeds a threshold value. Below this threshold diameter, the dsDNA gets denatured and melts even at the temperature of 300 K. Our simulations using SWCNTs with chirality indices (20,20) to (30,30) at 300 K found the critical diameter to be 3.25 nm (corresponding to (24,24) chirality). Analyses of the hydrogen bonds (H-bonds), Van der Walls (VdW) energy, and other inter-base interactions show drastic reduction in the number of H-bonds, VdW energy, and electrostatic energies between the bases of dsDNA when it is confined in narrower SWCNTs (up to diameter of 3.12 nm). On the other hand, the higher interaction energy between the dsDNA and the SWCNT surface in narrower SWCNTs assists in the melting of the dsDNA. Electrostatic mapping and hydration status analyses show that the dsDNA is not adequately hydrated and the counter ion distribution is not uniform below the critical diameter of the SWCNT. As properly hydrated counter ions provide stability to the dsDNA, we infer that the inappropriate hydration of counter ions and their non-uniform distribution around the dsDNA cause the melting of the dsDNA inside SWCNTs of diameter below the critical value of 3.25 nm. For confined dsDNAs that do not get denatured, we computed their elastic properties. The persistence length of dsDNA was found to increase by a factor of about two and the torsional stiffness by a factor of 1.5 for confinement inside SWCNTs of diameters up to 3.79 nm, the stretch modulus also following nearly the same trend. Interestingly, for higher diameters of SWCNT, 3.79 nm and above, the dsDNA becomes more flexible, demonstrating that the mechanical properties of the dsDNA under cylindrical confinement depend non-monotonically on the confinement diameter.
Collapse
Affiliation(s)
- Khadka B. Chhetri
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
- Department of Physics, Prithvinarayan Campus, Tribhuvan University, Pokhara, Nepal
| | - Chandan Dasgupta
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
| | - Prabal K. Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
6
|
Abstract
We study dsDNA (double strand DNA) melting in detail within varying strip-like confinement in a two-dimensional lattice model. The interplay between reduced configurational entropy and attractive base-pairing energy results in a non-monotonic melting profile of DNA. Structural transitions associated with confined DNA melting reveal a stretched or extended state for very strong confinement. By using the exact enumeration method, we investigate the emergence of a local denatured zone e.g. bubbles during DNA melting. The survival time of a single bubble within varying strip width is studied from the Fokker-Planck formalism by considering the bubble size as a reaction co-ordinate. We show that a simple lattice model can capture the sequence heterogeneity effect on DNA melting and bubble dynamics within the strip. Different time scales of bubble zipping for different DNA sequences are found, which may have potential applications in denaturation mapping.
Collapse
Affiliation(s)
- Dibyajyoti Mohanta
- Department of Physics, IIT (BHU), Varanasi 221005, India.
- The Institute of Mathematical Sciences, C.I.T Campus, Taramani, Chennai 600113, India
- Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
7
|
Mohanta D, Giri D, Kumar S. Effect of solvent gradient inside the entropic trap on polymer migration. Phys Rev E 2022; 105:024135. [PMID: 35291189 DOI: 10.1103/physreve.105.024135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
By employing the exact enumeration technique on the lattice model of a polymer, we study the migration of the polymer chain across an entropic trap in a quasiequilibrium condition and explore the effect of solvent gradient present in the entropic trap which acts both parallel and perpendicular to the direction of migration. The Fokker-Planck formalism utilizes the free energy landscape of a polymer chain across the channel in the presence of the entropic trap to calculate the migration time. It is revealed that the migration is fast when the solvent gradient acts along the migration axis (i.e., x axis) inside the channel in comparison to the channel having the entropic trap. We report here for the first time that the entropic trap makes the migration faster at a certain value of solvent gradient. We also study the effect of transverse solvent gradient (along the y axis) inside the trap and investigate the structural changes of the polymer during migration through the channel. We observe the nonmonotonic dependence of migration time on the solvent gradient.
Collapse
Affiliation(s)
| | | | - Sanjay Kumar
- Department of Physics, Institute of Science, BHU, Varanasi 221005, India
| |
Collapse
|