1
|
Eatson JL, Gordon JR, Cegielski P, Giesecke AL, Suckow S, Rao A, Silvestre OF, Liz-Marzán LM, Horozov TS, Buzza DMA. Capillary Assembly of Anisotropic Particles at Cylindrical Fluid-Fluid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6006-6017. [PMID: 37071832 PMCID: PMC10157885 DOI: 10.1021/acs.langmuir.3c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The unique behavior of colloids at liquid interfaces provides exciting opportunities for engineering the assembly of colloidal particles into functional materials. The deformable nature of fluid-fluid interfaces means that we can use the interfacial curvature, in addition to particle properties, to direct self-assembly. To this end, we use a finite element method (Surface Evolver) to study the self-assembly of rod-shaped particles adsorbed at a simple curved fluid-fluid interface formed by a sessile liquid drop with cylindrical geometry. Specifically, we study the self-assembly of single and multiple rods as a function of drop curvature and particle properties such as shape (ellipsoid, cylinder, and spherocylinder), contact angle, aspect ratio, and chemical heterogeneity (homogeneous and triblock patchy). We find that the curved interface allows us to effectively control the orientation of the rods, allowing us to achieve parallel, perpendicular, or novel obliquely orientations with respect to the cylindrical drop. In addition, by tuning particle properties to achieve parallel alignment of the rods, we show that the cylindrical drop geometry favors tip-to-tip assembly of the rods, not just for cylinders, but also for ellipsoids and triblock patchy rods. Finally, for triblock patchy rods with larger contact line undulations, we can achieve strong spatial confinement of the rods transverse to the cylindrical drop due to the capillary repulsion between the contact line undulations of the particle and the pinned contact lines of the sessile drop. Our capillary assembly method allows us to manipulate the configuration of single and multiple rod-like particles and therefore offers a facile strategy for organizing such particles into useful functional materials.
Collapse
Affiliation(s)
- Jack L Eatson
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, U.K
| | - Jacob R Gordon
- Department of Chemistry & Biochemistry, University of Hull, Hull HU6 7RX, U.K
| | | | - Anna L Giesecke
- AMO GmbH, Otto-Blumenthal-Str. 25, Aachen 52074, Germany
- University of Duisburg-Essen, Bismarckstr. 81, Duisburg 47057, Germany
| | - Stephan Suckow
- AMO GmbH, Otto-Blumenthal-Str. 25, Aachen 52074, Germany
| | - Anish Rao
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | - Oscar F Silvestre
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | - Luis M Liz-Marzán
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | - Tommy S Horozov
- Department of Chemistry & Biochemistry, University of Hull, Hull HU6 7RX, U.K
| | - D Martin A Buzza
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, U.K
| |
Collapse
|
2
|
Varma VA, Malhotra I, Babu SB. Enhancement in the diffusivity of Brownian spheroids in the presence of spheres. Phys Rev E 2022; 106:014602. [PMID: 35974557 DOI: 10.1103/physreve.106.014602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
In the present paper, we have extended the simulation technique Brownian cluster dynamics (BCD) to analyze the dynamics of the binary mixture of hard ellipsoids and spheres. The shape dependent diffusional properties have been incorporated into BCD using Perrin's factor and compared with analytical results of a one-component ellipsoidal system. We have investigated pathways to enhance the diffusivity of spheroids in the binary mixture by manipulating the phase behavior of the system through varying the fraction of spheres in the binary mixture. We show that at low volume fraction the spherical particles have a higher diffusion coefficient than the ellipsoids due to the higher friction coefficient. However, at a higher volume fraction, we show that the diffusion coefficient of the ellipsoids increases irrespective of the aspect ratio due to the anisotropic shape.
Collapse
Affiliation(s)
- Vikki Anand Varma
- Out of Equilibrium Group, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Isha Malhotra
- Out of Equilibrium Group, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sujin B Babu
- Out of Equilibrium Group, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
3
|
Morgan SO, Muravitskaya A, Lowe C, Adawi AM, Bouillard JSG, Horozov TS, Stasiuk GJ, Buzza DMA. Using adsorption kinetics to assemble vertically aligned nanorods at liquid interfaces for metamaterial applications. Phys Chem Chem Phys 2022; 24:11000-11013. [PMID: 35467675 DOI: 10.1039/d1cp05484h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vertically aligned monolayers of metallic nanorods have a wide range of applications as metamaterials or in surface enhanced Raman spectroscopy. However the fabrication of such structures using current top-down methods or through assembly on solid substrates is either difficult to scale up or have limited possibilities for further modification after assembly. The aim of this paper is to use the adsorption kinetics of cylindrical nanorods at a liquid interface as a novel route for assembling vertically aligned nanorod arrays that overcomes these problems. Specifically, we model the adsorption kinetics of the particle using Langevin dynamics coupled to a finite element model, accurately capturing the deformation of the liquid meniscus and particle friction coefficients during adsorption. We find that the final orientation of the cylindrical nanorod is determined by their initial attack angle when they contact the liquid interface, and that the range of attack angles leading to the end-on state is maximised when nanorods approach the liquid interface from the bulk phase that is more energetically favorable. In the absence of an external field, only a fraction of adsorbing nanorods end up in the end-on state (≲40% even for nanorods approaching from the energetically favourable phase). However, by pre-aligning the metallic nanorods with experimentally achievable electric fields, this fraction can be effectively increased to 100%. Using nanophotonic calculations, we also demonstrate that the resultant vertically aligned structures can be used as epsilon-near-zero and hyperbolic metamaterials. Our kinetic assembly method is applicable to nanorods with a range of diameters, aspect ratios and materials and therefore represents a versatile, low-cost and powerful platform for fabricating vertically aligned nanorods for metamaterial applications.
Collapse
Affiliation(s)
- S O Morgan
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, UK.
| | - A Muravitskaya
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, UK.
| | - C Lowe
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, UK.
| | - A M Adawi
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, UK.
| | - J-S G Bouillard
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, UK.
| | - T S Horozov
- Department of Chemistry & Biochemistry, University of Hull, Hull HU6 7RX, UK
| | - G J Stasiuk
- Imaging Chemistry & Biology, King's College London, Strand, London WC2R 2LS, UK
| | - D M A Buzza
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|