1
|
Hong L, Zhang Z, Wang Z, Yu X, Zhang J. Phase separation provides a mechanism to drive phenotype switching. Phys Rev E 2024; 109:064414. [PMID: 39021038 DOI: 10.1103/physreve.109.064414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/05/2024] [Indexed: 07/20/2024]
Abstract
Phenotypic switching plays a crucial role in cell fate determination across various organisms. Recent experimental findings highlight the significance of protein compartmentalization via liquid-liquid phase separation in influencing such decisions. However, the precise mechanism through which phase separation regulates phenotypic switching remains elusive. To investigate this, we established a mathematical model that couples a phase separation process and a gene expression process with feedback. We used the chemical master equation theory and mean-field approximation to study the effects of phase separation on the gene expression products. We found that phase separation can cause bistability and bimodality. Furthermore, phase separation can control the bistable properties of the system, such as bifurcation points and bistable ranges. On the other hand, in stochastic dynamics, the droplet phase exhibits double peaks within a more extensive phase separation threshold range than the dilute phase, indicating the pivotal role of the droplet phase in cell fate decisions. These findings propose an alternative mechanism that influences cell fate decisions through the phase separation process. As phase separation is increasingly discovered in gene regulatory networks, related modeling research can help build biomolecular systems with desired properties and offer insights into explaining cell fate decisions.
Collapse
|
2
|
Hong L, Wang Z, Zhang Z, Luo S, Zhou T, Zhang J. Phase separation reduces cell-to-cell variability of transcriptional bursting. Math Biosci 2024; 367:109127. [PMID: 38070763 DOI: 10.1016/j.mbs.2023.109127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/25/2023]
Abstract
Gene expression is a stochastic and noisy process often occurring in "bursts". Experiments have shown that the compartmentalization of proteins by liquid-liquid phase separation is conducive to reducing the noise of gene expression. Therefore, an important goal is to explore the role of bursts in phase separation noise reduction processes. We propose a coupled model that includes phase separation and a two-state gene expression process. Using the timescale separation method, we obtain approximate solutions for the expectation, variance, and noise strength of the dilute phase. We find that a higher burst frequency weakens the ability of noise reduction by phase separation, but as the burst size increases, this ability first increases and then decreases. This study provides a deeper understanding of phase separation to reduce noise in the stochastic gene expression with burst kinetics.
Collapse
Affiliation(s)
- Lijun Hong
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, PR China; School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province, 510275, PR China
| | - Zihao Wang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, PR China; School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province, 510275, PR China
| | - Zhenquan Zhang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, PR China; School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province, 510275, PR China
| | - Songhao Luo
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, PR China; School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province, 510275, PR China; Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, PR China; School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province, 510275, PR China
| | - Jiajun Zhang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, PR China; School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province, 510275, PR China.
| |
Collapse
|
3
|
Ghosal A, Bisker G. Inferring entropy production rate from partially observed Langevin dynamics under coarse-graining. Phys Chem Chem Phys 2022; 24:24021-24031. [PMID: 36065766 PMCID: PMC7613705 DOI: 10.1039/d2cp03064k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The entropy production rate (EPR) measures time-irreversibility in systems operating far from equilibrium. The challenge in estimating the EPR for a continuous variable system is the finite spatiotemporal resolution and the limited accessibility to all of the nonequilibrium degrees of freedom. Here, we estimate the irreversibility in partially observed systems following oscillatory dynamics governed by coupled overdamped Langevin equations. We coarse-grain an observed variable of a nonequilibrium driven system into a few discrete states and estimate a lower bound on the total EPR. As a model system, we use hair-cell bundle oscillations driven by molecular motors, such that the bundle tip position is observed, but the positions of the motors are hidden. In the observed variable space, the underlying driven process exhibits second-order semi-Markov statistics. The waiting time distributions (WTD), associated with transitions among the coarse-grained states, are non-exponential and convey the information on the broken time-reversal symmetry. By invoking the underlying time-irreversibility, we calculate a lower bound on the total EPR from the Kullback-Leibler divergence (KLD) between WTD. We show that the mean dwell-time asymmetry factor - the ratio between the mean dwell-times along the forward direction and the backward direction, can qualitatively measure the degree of broken time reversal symmetry and increases with finer spatial resolution. Finally, we apply our methodology to a continuous-time discrete Markov chain model, coarse-grained into a linear system exhibiting second-order semi-Markovian statistics, and demonstrate the estimation of a lower bound on the total EPR from irreversibility manifested only in the WTD.
Collapse
Affiliation(s)
- Aishani Ghosal
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Gili Bisker
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
- Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center for Light-Matter Interaction, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
Stochastic Transcription with Alterable Synthesis Rates. MATHEMATICS 2022. [DOI: 10.3390/math10132189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Gene transcription is a random bursting process that leads to large variability in mRNA numbers in single cells. The main cause is largely attributed to random switching between periods of active and inactive gene transcription. In some experiments, it has been observed that variation in the number of active transcription sites causes the initiation rate to vary during elongation. Results: We established a mathematical model based on the molecular reaction mechanism in single cells and studied a stochastic transcription system consisting of two active states and one inactive state, in which mRNA molecules are produced with two different synthesis rates. Conclusions: By calculation, we obtained the average mRNA expression level, the noise strength, and the skewness of transcripts. We gave a necessary and sufficient condition that causes the average mRNA level to peak at a limited time. The model could help us to distinguish an appropriate mechanism that may be employed by cells to transcribe mRNA molecules. Our simulations were in agreement with some experimental data and showed that the skewness can measure the deviation of the distribution of transcripts from the mean value. Especially for mature mRNAs, their distributions were almost able to be determined by the mean, the noise (or the noise strength), and the skewness.
Collapse
|
5
|
Yang X, Wang Z, Wu Y, Zhou T, Zhang J. Kinetic characteristics of transcriptional bursting in a complex gene model with cyclic promoter structure. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:3313-3336. [PMID: 35341253 DOI: 10.3934/mbe.2022153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
While transcription often occurs in a bursty manner, various possible regulations can lead to complex promoter patterns such as promoter cycles, giving rise to an important question: How do promoter kinetics shape transcriptional bursting kinetics? Here we introduce and analyze a general model of the promoter cycle consisting of multi-OFF states and multi-ON states, focusing on the effects of multi-ON mechanisms on transcriptional bursting kinetics. The derived analytical results indicate that burst size follows a mixed geometric distribution rather than a single geometric distribution assumed in previous studies, and ON and OFF times obey their own mixed exponential distributions. In addition, we find that the multi-ON mechanism can lead to bimodal burst-size distribution, antagonistic timing of ON and OFF, and diverse burst frequencies, each further contributing to cell-to-cell variability in the mRNA expression level. These results not only reveal essential features of transcriptional bursting kinetics patterns shaped by multi-state mechanisms but also can be used to the inferences of transcriptional bursting kinetics and promoter structure based on experimental data.
Collapse
Affiliation(s)
- Xiyan Yang
- School of Financial Mathematics and Statistics, Guangdong University of Finance, Guangzhou 510521, China
| | - Zihao Wang
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, China
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yahao Wu
- School of Financial Mathematics and Statistics, Guangdong University of Finance, Guangzhou 510521, China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, China
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiajun Zhang
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, China
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|