1
|
Sawicki J, Berner R, Loos SAM, Anvari M, Bader R, Barfuss W, Botta N, Brede N, Franović I, Gauthier DJ, Goldt S, Hajizadeh A, Hövel P, Karin O, Lorenz-Spreen P, Miehl C, Mölter J, Olmi S, Schöll E, Seif A, Tass PA, Volpe G, Yanchuk S, Kurths J. Perspectives on adaptive dynamical systems. CHAOS (WOODBURY, N.Y.) 2023; 33:071501. [PMID: 37486668 DOI: 10.1063/5.0147231] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/24/2023] [Indexed: 07/25/2023]
Abstract
Adaptivity is a dynamical feature that is omnipresent in nature, socio-economics, and technology. For example, adaptive couplings appear in various real-world systems, such as the power grid, social, and neural networks, and they form the backbone of closed-loop control strategies and machine learning algorithms. In this article, we provide an interdisciplinary perspective on adaptive systems. We reflect on the notion and terminology of adaptivity in different disciplines and discuss which role adaptivity plays for various fields. We highlight common open challenges and give perspectives on future research directions, looking to inspire interdisciplinary approaches.
Collapse
Affiliation(s)
- Jakub Sawicki
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Akademie Basel, Fachhochschule Nordwestschweiz FHNW, Leonhardsstrasse 6, 4009 Basel, Switzerland
| | - Rico Berner
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Sarah A M Loos
- DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Mehrnaz Anvari
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, 53757 Sankt-Augustin, Germany
| | - Rolf Bader
- Institute of Systematic Musicology, University of Hamburg, Hamburg, Germany
| | - Wolfram Barfuss
- Transdisciplinary Research Area: Sustainable Futures, University of Bonn, 53113 Bonn, Germany
- Center for Development Research (ZEF), University of Bonn, 53113 Bonn, Germany
| | - Nicola Botta
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Department of Computer Science and Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Nuria Brede
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Department of Computer Science, University of Potsdam, An der Bahn 2, 14476 Potsdam, Germany
| | - Igor Franović
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Daniel J Gauthier
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
| | - Sebastian Goldt
- Department of Physics, International School of Advanced Studies (SISSA), Trieste, Italy
| | - Aida Hajizadeh
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Philipp Hövel
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
| | - Omer Karin
- Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Philipp Lorenz-Spreen
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Christoph Miehl
- Akademie Basel, Fachhochschule Nordwestschweiz FHNW, Leonhardsstrasse 6, 4009 Basel, Switzerland
| | - Jan Mölter
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Boltzmannstraße 3, 85748 Garching bei München, Germany
| | - Simona Olmi
- Akademie Basel, Fachhochschule Nordwestschweiz FHNW, Leonhardsstrasse 6, 4009 Basel, Switzerland
| | - Eckehard Schöll
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Akademie Basel, Fachhochschule Nordwestschweiz FHNW, Leonhardsstrasse 6, 4009 Basel, Switzerland
| | - Alireza Seif
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Peter A Tass
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Serhiy Yanchuk
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| |
Collapse
|
2
|
Chen D, Yang Z, Xiao Q, Liu Z. Sensitive dynamics of brain cognitive networks and its resource constraints. CHAOS (WOODBURY, N.Y.) 2023; 33:063139. [PMID: 37318341 DOI: 10.1063/5.0145734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Abstract
It is well known that brain functions are closely related to the synchronization of brain networks, but the underlying mechanisms are still not completely understood. To study this problem, we here focus on the synchronization of cognitive networks, in contrast to that of a global brain network, as individual brain functions are in fact performed by different cognitive networks but not the global network. In detail, we consider four different levels of brain networks and two approaches, i.e., either with or without resource constraints. For the case of without resource constraints, we find that global brain networks have fundamentally different behaviors from that of the cognitive networks; i.e., the former has a continuous synchronization transition, while the latter shows a novel transition of oscillatory synchronization. This feature of oscillation comes from the sparse links among the communities of cognitive networks, resulting in coupling sensitive dynamics of brain cognitive networks. While for the case of resource constraints, we find that at the global level, the synchronization transition becomes explosive, in contrast to the continuous synchronization for the case of without resource constraints. At the level of cognitive networks, the transition also becomes explosive and the coupling sensitivity is significantly reduced, thus guaranteeing the robustness and fast switch of brain functions. Moreover, a brief theoretical analysis is provided.
Collapse
Affiliation(s)
- Dehua Chen
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
| | - Zhiyin Yang
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
| | - Qin Xiao
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
- College of Science, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Zonghua Liu
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
| |
Collapse
|
3
|
Schieber TA, Carpi LC, Pardalos PM, Masoller C, Díaz-Guilera A, Ravetti MG. Diffusion capacity of single and interconnected networks. Nat Commun 2023; 14:2217. [PMID: 37072418 PMCID: PMC10113202 DOI: 10.1038/s41467-023-37323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/10/2023] [Indexed: 04/20/2023] Open
Abstract
Understanding diffusive processes in networks is a significant challenge in complexity science. Networks possess a diffusive potential that depends on their topological configuration, but diffusion also relies on the process and initial conditions. This article presents Diffusion Capacity, a concept that measures a node's potential to diffuse information based on a distance distribution that considers both geodesic and weighted shortest paths and dynamical features of the diffusion process. Diffusion Capacity thoroughly describes the role of individual nodes during a diffusion process and can identify structural modifications that may improve diffusion mechanisms. The article defines Diffusion Capacity for interconnected networks and introduces Relative Gain, which compares the performance of a node in a single structure versus an interconnected one. The method applies to a global climate network constructed from surface air temperature data, revealing a significant change in diffusion capacity around the year 2000, suggesting a loss of the planet's diffusion capacity that could contribute to the emergence of more frequent climatic events.
Collapse
Affiliation(s)
- Tiago A Schieber
- Departamento de Ciências Administrativas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Laura C Carpi
- Instituto Nacional de Ciência e Tecnologia, Sistemas Complexos, INCT-SC, CEFET-MG, Belo Horizonte, MG, Brazil
- Machine Intelligence and Data Science Laboratory (MINDS), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Panos M Pardalos
- Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA
- Lab LATNA, National Research University, Higher School of Economics, Nizhny Novgorod, Russia
| | - Cristina Masoller
- Departament de Física, Universitat Politècnica de Catalunya, Terrassa, BCN, Spain
| | - Albert Díaz-Guilera
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, BCN, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, BCN, Spain
| | - Martín G Ravetti
- Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
4
|
Franović I, Eydam S, Yanchuk S, Berner R. Collective Activity Bursting in a Population of Excitable Units Adaptively Coupled to a Pool of Resources. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:841829. [PMID: 36926089 PMCID: PMC10013072 DOI: 10.3389/fnetp.2022.841829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 06/18/2023]
Abstract
We study the collective dynamics in a population of excitable units (neurons) adaptively interacting with a pool of resources. The resource pool is influenced by the average activity of the population, whereas the feedback from the resources to the population is comprised of components acting homogeneously or inhomogeneously on individual units of the population. Moreover, the resource pool dynamics is assumed to be slow and has an oscillatory degree of freedom. We show that the feedback loop between the population and the resources can give rise to collective activity bursting in the population. To explain the mechanisms behind this emergent phenomenon, we combine the Ott-Antonsen reduction for the collective dynamics of the population and singular perturbation theory to obtain a reduced system describing the interaction between the population mean field and the resources.
Collapse
Affiliation(s)
- Igor Franović
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia
| | - Sebastian Eydam
- Neural Circuits and Computations Unit, RIKEN Center for Brain Science, Wako, Japan
| | - Serhiy Yanchuk
- Institut für Mathematik, Technische Universität Berlin, Berlin, Germany
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
- Institut für Mathematik, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rico Berner
- Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|