1
|
Huang Q, Chen K, Liu C, Liu G, Shao Y, Zhao C, Chen R, Bu H, Kong L, Shen Y. Strain-dependent evolution of avalanche dynamics in bulk metallic glass. Phys Rev E 2025; 111:025410. [PMID: 40103154 DOI: 10.1103/physreve.111.025410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/07/2025] [Indexed: 03/20/2025]
Abstract
Avalanche phenomena characterized by power-law scaling are observed in amorphous solids and many other nonequilibrium systems during their deformation. Avalanches in these systems often exhibit scale invariance, a feature reminiscent of critical phenomena and universality classes, although their fundamental nature remains unclear. In this paper, we use in situ acoustic emission techniques to experimentally investigate the characteristics and evolution of avalanches during the deformation process of bulk metallic glass (BMG), a representative amorphous solid. We observed abundant avalanche events from the microplastic deformation region to the failure of the sample. We find that avalanches are power-law distributed with an exponent decreasing from 1.61 to 1.49 with increasing deformation throughout the tensile experiment. By quantitatively analyzing the strong strain dependence of various avalanche characteristics, we highlight the importance of additional coefficients that complete the widely studied finite size scaling description of avalanche dynamics and revealed a strain-mediated avalanche scaling mechanism. Through surface morphology analysis and spectral analysis of avalanche signals in BMG samples, we conclude that the underlying process of these avalanches are not macroscopic, such as cracks and large shear band propagation, but is instead related to nanoscale microstructural adjustments. Our results encourage further exploration into the microscopic origins of avalanches and suggest that theoretical frameworks beyond finite-size scaling merit more in-depth investigations.
Collapse
Affiliation(s)
- Qi Huang
- Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai 200240, China
| | - Kaiguo Chen
- National University of Defense Technology, College of Science, Changsha, Hunan 410073, China
| | - Chen Liu
- Innovation and Research Division, Ge-Room, Inc., 93160 Noisy le Grand, France
| | - Guisen Liu
- Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai 200240, China
| | - Yang Shao
- Tsinghua University, School of Materials Science and Engineering, Beijing 100084, China
| | - Chenlong Zhao
- Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai 200240, China
| | - Ran Chen
- Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai 200240, China
| | - Hengtong Bu
- Tsinghua University, School of Materials Science and Engineering, Beijing 100084, China
| | - Lingti Kong
- Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai 200240, China
| | - Yao Shen
- Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai 200240, China
| |
Collapse
|
2
|
Jocteur T, Bertin E, Mari R, Martens K. Protocol dependence for avalanches under constant stress in elastoplastic models. Phys Rev E 2025; 111:024101. [PMID: 40103142 DOI: 10.1103/physreve.111.024101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/05/2024] [Indexed: 03/20/2025]
Abstract
Close to the yielding transition, amorphous solids exhibit a jerky dynamics characterized by plastic avalanches. The statistics of these avalanches have been measured experimentally and numerically using a variety of different triggering protocols, assuming that all of them were equivalent for this purpose. In particular, two main classes of protocols have been studied, deformation under controlled strain or under controlled stress. In this work, we investigate different protocols to generate plasticity avalanches and conduct two-dimensional simulations of an elastoplastic model to examine the protocol dependence of avalanche statistics in yield-stress fluids. We demonstrate that when stress is controlled, the value and even the existence of the exponent governing the probability distribution function of avalanche sizes strongly depend on the protocol chosen to initiate avalanches. This confirms in finite dimension a scenario presented in a previous mean-field analysis. We identify a consistent stress-controlled protocol whose associated avalanches differ from the quasi-static ones in their fractal dimension and dynamical exponent. Remarkably, this protocol also seems to satisfy the scaling relations among exponents previously proposed. Our results underscore the necessity for a cautious interpretation of avalanche universality within elastoplastic models, and more generally within systems where several control parameters exist.
Collapse
Affiliation(s)
| | - Eric Bertin
- LIPhy, Univ. Grenoble-Alpes, CNRS, 38000 Grenoble, France
| | - Romain Mari
- LIPhy, Univ. Grenoble-Alpes, CNRS, 38000 Grenoble, France
| | | |
Collapse
|
3
|
Villarroel C, Düring G. Avalanche properties at the yielding transition: from externally deformed glasses to active systems. SOFT MATTER 2024; 20:3520-3528. [PMID: 38600803 DOI: 10.1039/d3sm01354e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
We investigated the yielding phenomenon in the quasistatic limit using numerical simulations of soft particles. Two different deformation scenarios, simple shear (passive) and self-random force (active), and two interaction potentials were used. Our approach reveals that the exponents describing the avalanche distribution are universal within the margin of error, showing consistency between the passive and active systems. This indicates that any differences observed in the flow curves may have resulted from a dynamic effect on the avalanche propagation mechanism. The evolution time required to reach a steady state differs significantly between active and passive scenarios under similar conditions. However, we demonstrated that plastic avalanches under athermal quasistatic simulation dynamics display a similar scaling relationship between avalanche size and relaxation time, which cannot explain the different flow curves.
Collapse
Affiliation(s)
- Carlos Villarroel
- Instituto de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile.
| | - Gustavo Düring
- Instituto de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile.
| |
Collapse
|
4
|
Oyama N, Kawasaki T, Kim K, Mizuno H. Scale Separation of Shear-Induced Criticality in Glasses. PHYSICAL REVIEW LETTERS 2024; 132:148201. [PMID: 38640386 DOI: 10.1103/physrevlett.132.148201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/30/2023] [Accepted: 02/21/2024] [Indexed: 04/21/2024]
Abstract
In a sheared steady state, glasses reach a nonequilibrium criticality called yielding criticality. We report that the qualitative nature of this nonequilibrium critical phenomenon depends on the details of the system and that responses and fluctuations are governed by different critical correlation lengths in specific situations. This scale separation of critical lengths arises when the screening of elastic propagation of mechanical signals is not negligible. We also discuss the determinant of the impact of screening effects from the viewpoint of the microscopic dissipation mechanism.
Collapse
Affiliation(s)
- Norihiro Oyama
- Toyota Central R&D Labs., Inc., Nagakute 480-1192, Japan
| | - Takeshi Kawasaki
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| | - Kang Kim
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
5
|
Shekh Alshabab S, Markert B, Bamer F. Criticality in the fracture of silica glass: Insights from molecular mechanics. Phys Rev E 2024; 109:034110. [PMID: 38632794 DOI: 10.1103/physreve.109.034110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/02/2024] [Indexed: 04/19/2024]
Abstract
The universality of avalanches characterizing the inelastic response of disordered materials has the potential to bridge the gap from micro to macroscale. In this study, we explore the statistics and the scaling behavior of avalanches occurring during the fracture process in silica glass using molecular mechanics. We introduce a robust method for capturing and quantifying these avalanches, allowing us to perform rigorous statistical analyses, revealing universal power laws associated with critical phenomena. The influence of an initial crack is explored, observing deviations from mean-field predictions while maintaining the property of criticality. However, the avalanche exponents in the unnotched samples are predicted correctly by the mean-field depinning model. Furthermore, we investigate the strain-dependent probability density function, its cutoff function, and the interrelation between the critical exponents. Finally, we unveil distinct scaling behavior for small and large avalanches of the crack growth, shedding light on the underlying fracture mechanisms in silica glass.
Collapse
Affiliation(s)
| | - Bernd Markert
- Institute of General Mechanics, RWTH Aachen University, 52062 Aachen, Germany
| | - Franz Bamer
- Institute of General Mechanics, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
6
|
Zhang L, Chen J, Zhang H, Huang D. The prediction of dynamical quantities in granular avalanches based on graph neural networks. J Chem Phys 2023; 159:214901. [PMID: 38038211 DOI: 10.1063/5.0172022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
The study of granular avalanches in rotating drums is not only essential to understanding various complex behaviors of interest in granular media from a scientific perspective; it also has valuable applications in regard to industrial processes and geological catastrophes. Despite decades of research studies on avalanches, a proper understanding of their dynamic properties still remains a great challenge to scientists due to a lack of state-of-the-art techniques. In this study, we accurately predict the avalanche dynamic features of three-dimensional granular materials in rotating drums, by using graph neural networks on the basis of their initial static microstructures alone. We find that our method is robust to changes in various model parameters, such as the interaction potential, size polydispersity, and noise in particle coordinates. In addition, with the grain-scale velocities obtained either from our network or from numerical simulations, we find an approximately equal and strong correlation between the global velocity and global velocity fluctuation in our 3D granular avalanche systems, which further demonstrates the predictive power of our trained graph neural networks to uncover the fundamental physics of granular avalanches. We expect our method to provide more insight into the avalanche dynamics of granular materials and other amorphous systems in the future.
Collapse
Affiliation(s)
- Ling Zhang
- School of Automation, Central South University, Changsha 410083, China
| | - Jianfeng Chen
- School of Automation, Central South University, Changsha 410083, China
| | - Hang Zhang
- School of Automation, Central South University, Changsha 410083, China
| | - Duan Huang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
7
|
Umeda K, Nishizawa K, Nagao W, Inokuchi S, Sugino Y, Ebata H, Mizuno D. Activity-dependent glassy cell mechanics II: Nonthermal fluctuations under metabolic activity. Biophys J 2023; 122:4395-4413. [PMID: 37865819 PMCID: PMC10698330 DOI: 10.1016/j.bpj.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/28/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023] Open
Abstract
The glassy cytoplasm, crowded with bio-macromolecules, is fluidized in living cells by mechanical energy derived from metabolism. Characterizing the living cytoplasm as a nonequilibrium system is crucial in elucidating the intricate mechanism that relates cell mechanics to metabolic activities. In this study, we conducted active and passive microrheology in eukaryotic cells, and quantified nonthermal fluctuations by examining the violation of the fluctuation-dissipation theorem. The power spectral density of active force generation was estimated following the Langevin theory extended to nonequilibrium systems. However, experiments performed while regulating cellular metabolic activity showed that the nonthermal displacement fluctuation, rather than the active nonthermal force, is linked to metabolism. We discuss that mechano-enzymes in living cells do not act as microscopic objects. Instead, they generate meso-scale collective fluctuations with displacements controlled by enzymatic activity. The activity induces structural relaxations in glassy cytoplasm. Even though the autocorrelation of nonthermal fluctuations is lost at long timescales due to the structural relaxations, the nonthermal displacement fluctuation remains regulated by metabolic reactions. Our results therefore demonstrate that nonthermal fluctuations serve as a valuable indicator of a cell's metabolic activities, regardless of the presence or absence of structural relaxations.
Collapse
Affiliation(s)
| | | | - Wataru Nagao
- Department of Physics, Kyushu University, Fukuoka, Japan
| | - Shono Inokuchi
- Department of Physics, Kyushu University, Fukuoka, Japan
| | - Yujiro Sugino
- Department of Physics, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Ebata
- Department of Physics, Kyushu University, Fukuoka, Japan
| | - Daisuke Mizuno
- Department of Physics, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
8
|
Oyama N, Mizuno H, Ikeda A. Shear-induced criticality in glasses shares qualitative similarities with the Gardner phase. SOFT MATTER 2023; 19:6074-6087. [PMID: 37491980 DOI: 10.1039/d3sm00512g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Although glass phases are ubiquitously found in various soft matter systems, we are still far from a complete understanding of them. The concept of marginal stability predicted by infinite-dimensional mean-field theories is drawing attention as a candidate for a universal and distinguishing unique feature of glasses. While among theoretical predictions, the non-Debye scaling has indeed been observed universally over various classes of glasses, the Gardner phase is found only in a limited portion of them. In this work, we numerically demonstrate that plastic events observed in two-dimensional Lennard-Jones glasses under quasistatic shear exhibit statistical properties that are qualitatively consistent with the picture of an infinitely hierarchical energy landscape associated with the Gardner phase.
Collapse
Affiliation(s)
- Norihiro Oyama
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
- Mathematics for Advanced Materials-OIL, AIST, Sendai 980-8577, Japan
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| |
Collapse
|
9
|
Yanagisawa N, Kurita R. Cross over to collective rearrangements near the dry-wet transition in two-dimensional foams. Sci Rep 2023; 13:4939. [PMID: 36973314 PMCID: PMC10042865 DOI: 10.1038/s41598-023-31577-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Liquid foams respond plastically to external perturbations over some critical magnitude. This rearrangement process is directly related to the mechanical properties of the foams, playing a significant role in determining foam lifetime, deformability, elasticity, and fluidity. In this paper, we experimentally investigate the rearrangement dynamics of foams near a dry-wet transition. When a foam transforms from a dry state to a wet state, it is found that considering collective events, separated T1 events propagate in dry foams, while T1 events occur simultaneously in wet foams. This cross over to collective rearrangements is closely related to the change in local bubble arrangements and mobility. Furthermore, it is also found that a probability of collective rearrangement events occurring follows a Poisson distribution, suggesting that there is little correlation between discrete collective rearrangement events. These results constitute progress in understanding the dynamical properties of soft jammed systems, relevant for biological and material sciences as well as food science.
Collapse
Affiliation(s)
- Naoya Yanagisawa
- Department of Physics, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiouji-shi, Tokyo, 192-0397, Japan.
| | - Rei Kurita
- Department of Physics, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiouji-shi, Tokyo, 192-0397, Japan.
| |
Collapse
|
10
|
Shimada M, Oyama N. Gas-liquid phase separation at zero temperature: mechanical interpretation and implications for gelation. SOFT MATTER 2022; 18:8406-8417. [PMID: 36285640 DOI: 10.1039/d2sm00628f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The relationship between glasses and gels has been intensely debated for decades; however, the transition between these two phases remains elusive. To investigate a gel formation process in the zero-temperature limit and its relation to the glass phase, we conducted numerical experiments on athermal quasistatic decompression. During decompression, the system experiences a cavitation event similar to phase separation and this is a gelation process at zero temperature. A normal mode analysis revealed that the phase separation is signaled by the vanishing of the lowest eigenenergy, similar to plastic events of glasses under shear. One primary difference from the shear-induced plasticity is that the vanishing mode experiences a qualitative change in its spatial energy distribution at the phase separation point. These findings enable us to define the glass-gel phase boundary based on mechanics.
Collapse
Affiliation(s)
- Masanari Shimada
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Department of Physics, Toronto Metropolitan University, M5B 2K3, Toronto, Canada.
| | - Norihiro Oyama
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Mathematics for Advanced Materials-OIL, AIST, Sendai 980-8577, Japan
| |
Collapse
|
11
|
Bhaumik H, Foffi G, Sastry S. Avalanches, Clusters, and Structural Change in Cyclically Sheared Silica Glass. PHYSICAL REVIEW LETTERS 2022; 128:098001. [PMID: 35302798 DOI: 10.1103/physrevlett.128.098001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/14/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
We investigate avalanches and clusters associated with plastic rearrangements and the nature of structural change in the prototypical strong glass, silica, computationally. We perform a detailed analysis of avalanches, and of spatially disconnected clusters that constitute them, for a wide range of system sizes. Although qualitative aspects of yielding in silica are similar to other glasses, the statistics of clusters exhibits significant differences, which we associate with differences in local structure. Across the yielding transition, anomalous structural change and densification, associated with a suppression of tetrahedral order, is observed to accompany strain localization.
Collapse
Affiliation(s)
- Himangsu Bhaumik
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| | - Giuseppe Foffi
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Srikanth Sastry
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| |
Collapse
|
12
|
Bhaumik H, Foffi G, Sastry S. Yielding transition of a two dimensional glass former under athermal cyclic sheardeformation. J Chem Phys 2022; 156:064502. [DOI: 10.1063/5.0085064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Giuseppe Foffi
- Laboratoire de Physique des Solides, Laboratoire de Physique des Solides, France
| | - Srikanth Sastry
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, India
| |
Collapse
|
13
|
Korchinski D, Ruscher C, Rottler J. Signatures of the spatial extent of plastic events in the yielding transition in amorphous solids. Phys Rev E 2021; 104:034603. [PMID: 34654138 DOI: 10.1103/physreve.104.034603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/06/2021] [Indexed: 11/07/2022]
Abstract
Amorphous solids are yield stress materials that flow when a sufficient load is applied. Their flow consists of periods of elastic loading interrupted by rapid stress drops, or avalanches, coming from microscopic rearrangements known as shear transformations (STs). Here we show that the spatial extent of avalanches in a steadily sheared amorphous solid has a profound effect on the distribution of local residual stresses that in turn determines the stress drop statistics. As reported earlier, the most unstable sites are located in a flat "plateau" region that decreases with system size. While the entrance into the plateau is set by the lower cutoff of the mechanical noise produced by individual STs, the departure from the usually assumed power-law (pseudogap) form of the residual stress distribution comes from far field effects related to spatially extended rearrangements. Interestingly, we observe that the average residual stress of the weakest sites is located in an intermediate power-law regime between the pseudogap and the plateau regimes, whose exponent decreases with system size. Our findings imply a new scaling relation linking the exponents characterizing the avalanche size and residual stress distributions.
Collapse
Affiliation(s)
- Daniel Korchinski
- Department of Physics and Astronomy and Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver BC V6T 1Z1, Canada
| | - Céline Ruscher
- Institut Charles Sadron - CNRS - UPR22, 23 rue du Loess, F-67034 Strasbourg, France
| | - Jörg Rottler
- Department of Physics and Astronomy and Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver BC V6T 1Z1, Canada
| |
Collapse
|
14
|
Oyama N, Mizuno H, Ikeda A. Instantaneous Normal Modes Reveal Structural Signatures for the Herschel-Bulkley Rheology in Sheared Glasses. PHYSICAL REVIEW LETTERS 2021; 127:108003. [PMID: 34533339 DOI: 10.1103/physrevlett.127.108003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The Herschel-Bulkley law, a universal constitutive relation, has been empirically known to be applicable to a vast range of soft materials, including sheared glasses. Although the Herschel-Bulkley law has attracted public attention, its structural origin has remained an open question. In this Letter, by means of atomistic simulation of binary Lennard-Jones glasses, we report that the instantaneous normal modes with negative eigenvalues, or so-called imaginary modes, serve as the structural signatures for the Herschel-Bulkley rheology in sheared glasses.
Collapse
Affiliation(s)
- Norihiro Oyama
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Mathematics for Advanced Materials-OIL, AIST, Sendai 980-8577, Japan
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| |
Collapse
|