1
|
Zhang Z, Cui T, Hutcheon MJ, Shipley AM, Song H, Du M, Kresin VZ, Duan D, Pickard CJ, Yao Y. Design Principles for High-Temperature Superconductors with a Hydrogen-Based Alloy Backbone at Moderate Pressure. PHYSICAL REVIEW LETTERS 2022; 128:047001. [PMID: 35148145 DOI: 10.1103/physrevlett.128.047001] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/28/2021] [Accepted: 12/24/2021] [Indexed: 05/25/2023]
Abstract
Hydrogen-based superconductors provide a route to the long-sought goal of room-temperature superconductivity, but the high pressures required to metallize these materials limit their immediate application. For example, carbonaceous sulfur hydride, the first room-temperature superconductor made in a laboratory, can reach a critical temperature (T_{c}) of 288 K only at the extreme pressure of 267 GPa. The next recognized challenge is the realization of room-temperature superconductivity at significantly lower pressures. Here, we propose a strategy for the rational design of high-temperature superconductors at low pressures by alloying small-radius elements and hydrogen to form ternary H-based superconductors with alloy backbones. We identify a "fluorite-type" backbone in compositions of the form AXH_{8}, which exhibit high-temperature superconductivity at moderate pressures compared with other reported hydrogen-based superconductors. The Fm3[over ¯]m phase of LaBeH_{8}, with a fluorite-type H-Be alloy backbone, is predicted to be thermodynamically stable above 98 GPa, and dynamically stable down to 20 GPa with a high T_{c}∼185 K. This is substantially lower than the synthesis pressure required by the geometrically similar clathrate hydride LaH_{10} (170 GPa). Our approach paves the way for finding high-T_{c} ternary H-based superconductors at conditions close to ambient pressures.
Collapse
Affiliation(s)
- Zihan Zhang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Tian Cui
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Michael J Hutcheon
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Alice M Shipley
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Hao Song
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Mingyang Du
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Vladimir Z Kresin
- Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720, USA
| | - Defang Duan
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Chris J Pickard
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Yansun Yao
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| |
Collapse
|