1
|
Vinogradova OI, Silkina EF. Electrophoresis of ions and electrolyte conductivity: From bulk to nanochannels. J Chem Phys 2023; 159:174707. [PMID: 37933780 DOI: 10.1063/5.0168557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
When electrolyte solutions are confined in micro- and nanochannels their conductivity is significantly different from those in a bulk phase. Here we revisit the theory of this phenomenon by focusing attention on the reduction in the ion mobility with the concentration of salt and a consequent impact to the conductivity of a monovalent solution, from bulk to confined in a narrow slit. We first give a systematic treatment of electrophoresis of ions and obtain equations for their zeta potentials and mobilities. The latter are then used to obtain a simple expression for a bulk conductivity, which is valid in a concentration range up to a few molars and more accurate than prior analytic theories. By extending the formalism to the electrolyte solution in the charged channel the equations describing the conductivity in different modes are presented. They can be regarded as a generalization of prior work on the channel conductivity to a more realistic case of a nonzero reduction of the electrophoretic mobility of ions with salt concentration. Our analysis provides a framework for interpreting measurements on the conductivity of electrolyte solutions in the bulk and in narrow channels.
Collapse
Affiliation(s)
- Olga I Vinogradova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, 31 Leninsky Prospect, 119071 Moscow, Russia
| | - Elena F Silkina
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, 31 Leninsky Prospect, 119071 Moscow, Russia
| |
Collapse
|
2
|
Ahmed SA, Li W, Xing XL, Pan XT, Xi K, Li CY, Wang K, Xia XH. Ammonia-Induced Anomalous Ion Transport in Covalent Organic Framework Nanochannels. ACS Sens 2023; 8:2179-2185. [PMID: 37245157 DOI: 10.1021/acssensors.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
More anomalous transport behaviors have been observed with the rapid progress in nanofabrication technology and characterization tools. The ions/molecules inside nanochannels can act dramatically different from those in the bulk systems and exhibit novel mechanisms. Here, we have reported the fabrication of a nanodevice, covalent organic frameworks covered theta pipette (CTP), that combine the advantages of theta pipette (TP), nanochannels framework, and field-effect transistors (FETs) for controlling and modulating the anomalous transport. Our results show that ammonia, a weak base, causes a continuous supply of ions inside covalent organic framework (COF) nanochannels, leading to an abnormally high current depending on the ionic/molecular size and the pore size of the nanochannel. Furthermore, CTP can distinguish different concentrations of ammonia and have all of the qualities of a nanosensor.
Collapse
Affiliation(s)
- Saud Asif Ahmed
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518114, Guangdong, P. R. China
| | - Wang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiao-Lei Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiao-Tong Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Kai Xi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Cheng-Yong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518114, Guangdong, P. R. China
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, P. R. China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|