1
|
Shi W, Jiao Y, Torquato S. Three-dimensional construction of hyperuniform, nonhyperuniform, and antihyperuniform disordered heterogeneous materials and their transport properties via spectral density functions. Phys Rev E 2025; 111:035310. [PMID: 40247492 DOI: 10.1103/physreve.111.035310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/18/2025] [Indexed: 04/19/2025]
Abstract
Rigorous theories connecting physical properties of a heterogeneous material to its microstructure offer a promising avenue to guide the computational material design and optimization. The spectral density function χ[over ̃]_{_{V}}(k), which can be obtained experimentally from scattering data, enables accurate determination of various transport and wave propagation characteristics, including the time-dependent diffusion spreadability S(t) and effective dynamic dielectric constant ε_{e} for electromagnetic wave propagation. Moreover, χ[over ̃]_{_{V}}(k) determines rigorous upper bounds on the fluid permeability K. Given the importance of χ[over ̃]_{_{V}}(k), we present here an efficient Fourier-space based computational framework to construct three-dimensional (3D) statistically isotropic two-phase heterogeneous materials corresponding to targeted spectral density functions. In particular, we employ a variety of analytical functional forms for χ[over ̃]_{_{V}}(k) that satisfy all known necessary conditions to construct disordered stealthy hyperuniform, standard hyperuniform, nonhyperuniform, and antihyperuniform two-phase heterogeneous material systems at varying phase volume fractions. We show that by tuning the correlations in the system across length scales via the targeted functions, one can generate a rich spectrum of distinct structures within each of the above classes of materials. Importantly, we present the first realization of antihyperuniform two-phase heterogeneous materials in 3D, which are characterized by autocovariance function χ_{_{V}}(r) with a power-law tail, resulting in microstructures that contain clusters of dramatically different sizes and morphologies. We also determine the diffusion spreadability S(t) and estimate the fluid permeability K associated with all of the constructed materials directly from the corresponding spectral densities. Although it is well established that the long-time asymptotic scaling behavior of S(t) only depends on the functional form of χ[over ̃]_{_{V}}(k), with the stealthy hyperuniform and antihyperuniform media, respectively, achieving the most and least efficient transport, we find that varying the length-scale parameter within each class of χ[over ̃]_{_{V}}(k) functions can also lead to orders of magnitude variation of S(t) at intermediate and long time scales. Moreover, we find that increasing the solid volume fraction ϕ_{1} and correlation length a in the constructed media generally leads to a decrease in the dimensionless fluid permeability K/a^{2}, while the antihyperuniform media possess the largest K/a^{2} among the four classes of materials with the same ϕ_{1} and a. These results indicate the feasibility of employing parameterized spectral densities for designing composites with targeted transport properties.
Collapse
Affiliation(s)
- Wenlong Shi
- Arizona State University, Materials Science and Engineering, Tempe, Arizona 85287, USA
| | - Yang Jiao
- Arizona State University, Materials Science and Engineering, Tempe, Arizona 85287, USA
- Arizona State University, Department of Physics, Tempe, Arizona 85287, USA
| | - Salvatore Torquato
- Princeton University, Department of Chemistry, Princeton, New Jersey 08544, USA
- Princeton University, Department of Physics, Princeton, New Jersey 08544, USA
- Princeton University, Princeton Institute of Materials, Princeton, New Jersey 08544, USA
- Princeton University, Program in Applied and Computational Mathematics, Princeton, New Jersey 08544, USA
| |
Collapse
|
2
|
Postnicov V, Karsanina MV, Khlyupin A, Gerke KM. Evaluation of three-point correlation functions from structural images on CPU and GPU architectures: Accounting for anisotropy effects. Phys Rev E 2024; 110:045306. [PMID: 39562887 DOI: 10.1103/physreve.110.045306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/27/2024] [Indexed: 11/21/2024]
Abstract
Structures, or spatial arrangements of matter and energy, including some fields (e.g., velocity or pressure) are ubiquitous in research applications and frequently require description for subsequent analysis, or stochastic reconstruction from limited data. The classical descriptors are two-point correlation functions (CFs), but the computation of three-point statistics is known to be advantageous in some cases as they can probe non-Gaussian signatures, not captured by their two-point counterparts. Moreover, n-point CFs with n≥3 are believed to possess larger information content and provide more information about studied structures. In this paper, we have developed algorithms and code to compute S_{3},C_{3},F_{sss},F_{ssv}, and F_{svv} with a right-angle and arbitrary triangle pattern. The former was believed to be faster to compute, but with the help of precomputed regular positions we achieved the same speed for arbitrary pattern. In this work we also implement and demonstrate computations of directional three-point CFs-for this purpose right-triangular pattern seems to be superior due to explicit orientation and high coverage. Moreover, we assess the errors in CFs' evaluation due to image or pattern rotations and show that they have minor effect on accuracy of computations. The execution times of our algorithms for the same number of samples are orders of magnitude lower than in existing published counterparts. We show that the volume of data produced gets unwieldy very easily, especially if computations are performed in frequency domain. For these reasons until information content of different sets of correlation functions with different "n-pointness" is known, advantages of CFs with n>3 are not clear. Nonetheless, developed algorithms and code are universal enough to be easily extendable to any n with increasing computational and random access memory (RAM) burden. All results are available as part of open-source package correlationfunctions.jl [V. Postnicov et al., Comput. Phys. Commun. 299, 109134 (2024)10.1016/j.cpc.2024.109134.]. As described in this paper, three-point CFs computations can be immediately applied in a great number of research applications, for example: (1) flow and transport velocity fields analysis or any data with non-Gaussian signatures, (2) deep learning for structural and physical properties, and (3) structure taxonomy and categorization. In all these and numerous other potential cases the ability to compute directional three-point functions may be crucial. Notably, the organization of the code functions allows computation of cross correlation, i.e., one can compute three-point CFs for multiphase images (while binary structures were used in this paper for simplicity of explanations).
Collapse
|
3
|
Shi W, Keeney D, Chen D, Jiao Y, Torquato S. Computational design of anisotropic stealthy hyperuniform composites with engineered directional scattering properties. Phys Rev E 2023; 108:045306. [PMID: 37978628 DOI: 10.1103/physreve.108.045306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 11/19/2023]
Abstract
Disordered hyperuniform materials are an emerging class of exotic amorphous states of matter that endow them with singular physical properties, including large isotropic photonic band gaps, superior resistance to fracture, and nearly optimal electrical and thermal transport properties, to name but a few. Here we generalize the Fourier-space-based numerical construction procedure for designing and generating digital realizations of isotropic disordered hyperuniform two-phase heterogeneous materials (i.e., composites) developed by Chen and Torquato [Acta Mater. 142, 152 (2018)1359-645410.1016/j.actamat.2017.09.053] to anisotropic microstructures with targeted spectral densities. Our generalized construction procedure explicitly incorporates the vector-dependent spectral density function χ[over ̃]_{_{V}}(k) of arbitrary form that is realizable. We demonstrate the utility of the procedure by generating a wide spectrum of anisotropic stealthy hyperuniform microstructures with χ[over ̃]_{_{V}}(k)=0 for k∈Ω, i.e., complete suppression of scattering in an "exclusion" region Ω around the origin in Fourier space. We show how different exclusion-region shapes with various discrete symmetries, including circular-disk, elliptical-disk, square, rectangular, butterfly-shaped, and lemniscate-shaped regions of varying size, affect the resulting statistically anisotropic microstructures as a function of the phase volume fraction. The latter two cases of Ω lead to directionally hyperuniform composites, which are stealthy hyperuniform only along certain directions and are nonhyperuniform along others. We find that while the circular-disk exclusion regions give rise to isotropic hyperuniform composite microstructures, the directional hyperuniform behaviors imposed by the shape asymmetry (or anisotropy) of certain exclusion regions give rise to distinct anisotropic structures and degree of uniformity in the distribution of the phases on intermediate and large length scales along different directions. Moreover, while the anisotropic exclusion regions impose strong constraints on the global symmetry of the resulting media, they can still possess structures at a local level that are nearly isotropic. Both the isotropic and anisotropic hyperuniform microstructures associated with the elliptical-disk, square, and rectangular Ω possess phase-inversion symmetry over certain range of volume fractions and a percolation threshold ϕ_{c}≈0.5. On the other hand, the directionally hyperuniform microstructures associated with the butterfly-shaped and lemniscate-shaped Ω do not possess phase-inversion symmetry and percolate along certain directions at much lower volume fractions. We also apply our general procedure to construct stealthy nonhyperuniform systems. Our construction algorithm enables one to control the statistical anisotropy of composite microstructures via the shape, size, and symmetries of Ω, which is crucial to engineering directional optical, transport, and mechanical properties of two-phase composite media.
Collapse
Affiliation(s)
- Wenlong Shi
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - David Keeney
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Duyu Chen
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
- Princeton Institute of Materials, Princeton University, Princeton, New Jersey 08544, USA
- Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
4
|
Zhang F, Teng Q, He X, Wu X, Dong X. Improved recurrent generative model for reconstructing large-size porous media from two-dimensional images. Phys Rev E 2022; 106:025310. [PMID: 36109946 DOI: 10.1103/physreve.106.025310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Modeling the three-dimensional (3D) structure from a given 2D image is of great importance for analyzing and studying the physical properties of porous media. As an intractable inverse problem, many methods have been developed to address this fundamental problems over the past decades. Among many methods, the deep learning-(DL) based methods show great advantages in terms of accuracy, diversity, and efficiency. Usually, the 3D reconstruction from the 2D slice with a larger field-of-view is more conducive to simulate and analyze the physical properties of porous media accurately. However, due to the limitation of reconstruction ability, the reconstruction size of most widely used generative adversarial network-based model is constrained to 64^{3} or 128^{3}. Recently, a 3D porous media recurrent neural network based method (namely, 3D-PMRNN) (namely 3D-PMRNN) has been proposed to improve the reconstruction ability, and thus the reconstruction size is expanded to 256^{3}. Nevertheless, in order to train these models, the existed DL-based methods need to down-sample the original computed tomography (CT) image first so that the convolutional kernel can capture the morphological features of training images. Thus, the detailed information of the original CT image will be lost. Besides, the 3D reconstruction from a optical thin section is not available because of the large size of the cutting slice. In this paper, we proposed an improved recurrent generative model to further enhance the reconstruction ability (512^{3}). Benefiting from the RNN-based architecture, the proposed model requires only one 3D training sample at least and generates the 3D structures layer by layer. There are three more improvements: First, a hybrid receptive field for the kernel of convolutional neural network is adopted. Second, an attention-based module is merged into the proposed model. Finally, a useful section loss is proposed to enhance the continuity along the Z direction. Three experiments are carried out to verify the effectiveness of the proposed model. Experimental results indicate the good reconstruction ability of proposed model in terms of accuracy, diversity, and generalization. And the effectiveness of section loss is also proved from the perspective of visual inspection and statistical comparison.
Collapse
Affiliation(s)
- Fan Zhang
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
- School of electrical engineering and electronic information, Xihua University, Chengdu 610039, China
| | - Qizhi Teng
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaohai He
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaohong Wu
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Xiucheng Dong
- School of electrical engineering and electronic information, Xihua University, Chengdu 610039, China
| |
Collapse
|
5
|
Volkhonskiy D, Muravleva E, Sudakov O, Orlov D, Burnaev E, Koroteev D, Belozerov B, Krutko V. Generative adversarial networks for reconstruction of three-dimensional porous media from two-dimensional slices. Phys Rev E 2022; 105:025304. [PMID: 35291138 DOI: 10.1103/physreve.105.025304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
In many branches of earth sciences, the problem of rock study on the microlevel arises. However, a significant number of representative samples is not always feasible. Thus the problem of the generation of samples with similar properties becomes actual. In this paper we propose a deep learning architecture for three-dimensional porous medium reconstruction from two-dimensional slices. We fit a distribution on all possible three-dimensional structures of a specific type based on the given data set of samples. Then, given partial information (central slices), we recover the three-dimensional structure around such slices as the most probable one according to that constructed distribution. Technically, we implement this in the form of a deep neural network with encoder, generator, and discriminator modules. Numerical experiments show that this method provides a good reconstruction in terms of Minkowski functionals.
Collapse
Affiliation(s)
- Denis Volkhonskiy
- Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Ekaterina Muravleva
- Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Oleg Sudakov
- Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Denis Orlov
- Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Evgeny Burnaev
- Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Dmitry Koroteev
- Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Boris Belozerov
- Gazprom Neft Science & Technology Center, St Petersburg 190000, Russia
| | - Vladislav Krutko
- Gazprom Neft Science & Technology Center, St Petersburg 190000, Russia
| |
Collapse
|