1
|
Beyer K, Strunz WT. Operational Work Fluctuation Theorem for Open Quantum Systems. PHYSICAL REVIEW LETTERS 2025; 134:140403. [PMID: 40279605 DOI: 10.1103/physrevlett.134.140403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/11/2025] [Indexed: 04/27/2025]
Abstract
The classical Jarzynski equality establishes an exact relation between the stochastic work performed on a system driven out of thermal equilibrium and the free energy difference in a corresponding quasistatic process. This fluctuation theorem bears experimental relevance, as it enables the determination of the free energy difference through the measurement of externally applied work in a nonequilibrium process. In the quantum case, the Jarzynski equality only holds if the measurement procedure of the stochastic work is drastically changed: it is replaced by a so-called two-point measurement scheme that requires the knowledge of the initial and final Hamiltonian and therefore lacks the predictive power for the free energy difference that the classical Jarzynski equation is known for. Here, we propose a quantum fluctuation theorem that is valid for externally measurable quantum work determined during the driving protocol. In contrast to the two-point measurement case, the theorem also applies to open quantum systems and the scenario can be realized without knowing the system Hamiltonian. Our fluctuation theorem comes in the form of an inequality and therefore only yields bounds to the true free energy difference. The inequality is saturated in the quasiclassical case of vanishing energy coherences at the beginning and at the end of the protocol. Thus, there is a clear quantum disadvantage.
Collapse
Affiliation(s)
- Konstantin Beyer
- Stevens Institute of Technology, Department of Physics, Hoboken, New Jersey 07030, USA
- TUD Dresden University of Technology, Institute of Theoretical Physics, 01062, Dresden, Germany
| | - Walter T Strunz
- TUD Dresden University of Technology, Institute of Theoretical Physics, 01062, Dresden, Germany
| |
Collapse
|
2
|
Anka MF, de Oliveira TR, Jonathan D. Work and efficiency fluctuations in a quantum Otto cycle with idle levels. Phys Rev E 2024; 109:064129. [PMID: 39021004 DOI: 10.1103/physreve.109.064129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
We study the performance of a quantum Otto heat engine with two spins coupled by a Heisenberg interaction, taking into account not only the mean values of work and efficiency but also their fluctuations. We first show that, for this system, the output work and its fluctuations are directly related to the magnetization and magnetic susceptibility of the system at equilibrium with either heat bath. We analyze the regions where the work extraction can be done with low relative fluctuation for a given range of temperatures, while still achieving an efficiency higher than that of a single spin system heat engine. In particular, we find that, due to the presence of "idle" levels, an increase in the interspin coupling can either increase or decrease fluctuations, depending on the other parameters. In all cases, however, we find that the relative fluctuations in work or efficiency remain large, implying that this microscopic engine is not very reliable as a source of work.
Collapse
|
3
|
Perna G, Calzetta E. Limits on quantum measurement engines. Phys Rev E 2024; 109:044102. [PMID: 38755920 DOI: 10.1103/physreve.109.044102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/01/2024] [Indexed: 05/18/2024]
Abstract
A quantum measurement involves energy exchanges between the system to be measured and the measuring apparatus. Some of them involve energy losses, for example because energy is dissipated into the environment or is spent in recording the measurement outcome. Moreover, these processes take time. For this reason, these exchanges must be taken into account in the analysis of a quantum measurement engine, and set limits to its efficiency and power. We propose a quantum engine based on a spin 1/2 particle in a magnetic field and study its limitations due to the quantum nature of the evolution. The coupling with the electromagnetic vacuum is taken into account and plays the role of a measurement apparatus. We fully study its dynamics, work, power, and efficiency.
Collapse
Affiliation(s)
- Guillermo Perna
- Departamento de Física, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina and CONICET - Universidad de Buenos Aires, Ciudad Universitaria, Ciudad de Buenos Aires CP 1428, Argentina
| | - Esteban Calzetta
- Departamento de Física, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina and CONICET - Universidad de Buenos Aires, Ciudad Universitaria, Ciudad de Buenos Aires CP 1428, Argentina
| |
Collapse
|
4
|
El Makouri A, Slaoui A, Ahl Laamara R. Monitored nonadiabatic and coherent-controlled quantum unital Otto heat engines: First four cumulants. Phys Rev E 2023; 108:044114. [PMID: 37978648 DOI: 10.1103/physreve.108.044114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/18/2023] [Indexed: 11/19/2023]
Abstract
Recently, measurement-based quantum thermal machines have drawn more attention in the field of quantum thermodynamics. However, the previous results on quantum Otto heat engines were either limited to special unital and nonunital channels in the bath stages, or a specific driving protocol at the work strokes and assuming the cycle being time-reversal symmetric, i.e., V^{†}=U (or V=U). In this paper, we consider a single spin-1/2 quantum Otto heat engine, by first replacing one of the heat baths by an arbitrary unital channel, and then we give the exact analytical expression of the characteristic function from which all the cumulants of heat and work emerge. We prove that under the effect of monitoring, ν_{2}>ν_{1} is a necessary condition for positive work, either for a symmetric or asymmetric-driven Otto cycle. Furthermore, going beyond the average we show that the ratio of the fluctuations of work and heat is lower and upper-bounded when the system is working as a heat engine. However, differently from the previous results in the literature, we consider the third and fourth cumulants as well. It is shown that the ratio of the third (fourth) cumulants of work and heat is not upper-bounded by unity nor lower-bounded by the third (fourth) power of the efficiency, as is the case for the ratio of fluctuations. Finally, we consider applying a specific unital map that plays the role of a heat bath in a coherently superposed manner, and we show the role of the initial coherence of the control qubit on efficiency, on the average work and its relative fluctuations.
Collapse
Affiliation(s)
- Abdelkader El Makouri
- LPHE-Modeling and Simulation, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Abdallah Slaoui
- LPHE-Modeling and Simulation, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Centre of Physics and Mathematics, CPM, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Rachid Ahl Laamara
- LPHE-Modeling and Simulation, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Centre of Physics and Mathematics, CPM, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
5
|
Koshihara K, Yuasa K. Quantum ergotropy and quantum feedback control. Phys Rev E 2023; 107:064109. [PMID: 37464633 DOI: 10.1103/physreve.107.064109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/08/2023] [Indexed: 07/20/2023]
Abstract
We study the energy extraction from and charging to a finite-dimensional quantum system by general quantum operations. We prove that the changes in energy induced by unital quantum operations are limited by the ergotropy and charging bounds for unitary quantum operations. This implies that, in order to break the ergotropy bound for unitary quantum operations, one needs to perform a quantum operation with feedback control. We also show that the ergotropy bound for unital quantum operations, applied to initial thermal equilibrium states, is tighter than the inequality representing the standard second law of thermodynamics without feedback control.
Collapse
Affiliation(s)
- Kenta Koshihara
- Department of Physics, Waseda University, Tokyo 169-8555, Japan
| | - Kazuya Yuasa
- Department of Physics, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
6
|
Kaneyasu M, Hasegawa Y. Quantum Otto cycle under strong coupling. Phys Rev E 2023; 107:044127. [PMID: 37198760 DOI: 10.1103/physreve.107.044127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 05/19/2023]
Abstract
Quantum heat engines are often discussed under the weak-coupling assumption that the interaction between the system and the reservoirs is negligible. Although this setup is easier to analyze, this assumption cannot be justified on the quantum scale. In this study, a quantum Otto cycle model that can be generally applied without the weak-coupling assumption is proposed. We replace the thermalization process in the weak-coupling model with a process comprising thermalization and decoupling. The efficiency of the proposed model is analytically calculated and indicates that, when the contribution of the interaction terms is neglected in the weak-interaction limit, it reduces to that of the earlier model. The sufficient condition for the efficiency of the proposed model not to surpass that of the weak-coupling model is that the decoupling processes of our model have a positive cost. Moreover, the relation between the interaction strength and the efficiency of the proposed model is numerically examined by using a simple two-level system. Furthermore, we show that our model's efficiency can surpass that of the weak-coupling model under particular cases. From analyzing the majorization relation, we also find a design method of the optimal interaction Hamiltonians, which are expected to provide the maximum efficiency of the proposed model. Under these interaction Hamiltonians, the numerical experiment shows that the proposed model achieves higher efficiency than that of its weak-coupling counterpart.
Collapse
Affiliation(s)
- Mao Kaneyasu
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
7
|
Bhandari B, Czupryniak R, Erdman PA, Jordan AN. Measurement-Based Quantum Thermal Machines with Feedback Control. ENTROPY (BASEL, SWITZERLAND) 2023; 25:204. [PMID: 36832571 PMCID: PMC9955564 DOI: 10.3390/e25020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
We investigated coupled-qubit-based thermal machines powered by quantum measurements and feedback. We considered two different versions of the machine: (1) a quantum Maxwell's demon, where the coupled-qubit system is connected to a detachable single shared bath, and (2) a measurement-assisted refrigerator, where the coupled-qubit system is in contact with a hot and cold bath. In the quantum Maxwell's demon case, we discuss both discrete and continuous measurements. We found that the power output from a single qubit-based device can be improved by coupling it to the second qubit. We further found that the simultaneous measurement of both qubits can produce higher net heat extraction compared to two setups operated in parallel where only single-qubit measurements are performed. In the refrigerator case, we used continuous measurement and unitary operations to power the coupled-qubit-based refrigerator. We found that the cooling power of a refrigerator operated with swap operations can be enhanced by performing suitable measurements.
Collapse
Affiliation(s)
- Bibek Bhandari
- Institute for Quantum Studies, Chapman University, Orange, CA 92866, USA
| | - Robert Czupryniak
- Institute for Quantum Studies, Chapman University, Orange, CA 92866, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, NY 14627, USA
| | - Paolo Andrea Erdman
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Andrew N. Jordan
- Institute for Quantum Studies, Chapman University, Orange, CA 92866, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
8
|
Misra A, Opatrný T, Kurizki G. Work extraction from single-mode thermal noise by measurements: How important is information? Phys Rev E 2022; 106:054131. [PMID: 36559367 DOI: 10.1103/physreve.106.054131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Our goal in this article is to elucidate the rapport of work and information in the context of a minimal quantum-mechanical setup: a converter of heat input to work output, the input consisting of a single oscillator mode prepared in a hot thermal state along with a few much colder oscillator modes. The core issues we consider, taking account of the quantum nature of the setup, are as follows: (i) How and to what extent can information act as a work resource or, conversely, be redundant for work extraction? (ii) What is the optimal way of extracting work via information acquired by measurements? (iii) What is the bearing of information on the efficiency-power tradeoff achievable in such setups? We compare the efficiency of work extraction and the limitations of power in our minimal setup by different, generic, measurement strategies of the hot and cold modes. For each strategy, the rapport of work and information extraction is found and the cost of information erasure is allowed for. The possibilities of work extraction without information acquisition, via nonselective measurements, are also analyzed. Overall, we present, by generalizing a method based on optimized homodyning that we have recently proposed, the following insight: extraction of work by observation and feedforward that only measures a small fraction of the input is clearly advantageous to the conceivable alternatives. Our results may become the basis of a practical strategy of converting thermal noise to useful work in optical setups, such as coherent amplifiers of thermal light, as well as in their optomechanical and photovoltaic counterparts.
Collapse
Affiliation(s)
- Avijit Misra
- AMOS and Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel and International Center of Quantum Artificial Intelligence for Science and Technology (QuArtist) and Department of Physics, Shanghai University, 200444 Shanghai, China
| | - Tomáš Opatrný
- Department of Optics, Faculty of Science, Palacký University, 17. listopadu 50, 77146 Olomouc, Czech Republic
| | - Gershon Kurizki
- AMOS and Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
9
|
Koshihara K, Yuasa K. Necessity of feedback control for the quantum Maxwell demon in a finite-time steady feedback cycle. Phys Rev E 2022; 106:024134. [PMID: 36109897 DOI: 10.1103/physreve.106.024134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
We revisit quantum Maxwell demon in thermodynamic feedback cycle in the steady-state regime. We derive a generalized version of the Clausius inequality for a finite-time steady feedback cycle with a single heat bath. It is shown to be tighter than previously known ones, and allows us to clarify that feedback control is necessary to violate the standard Clausius inequality.
Collapse
Affiliation(s)
- Kenta Koshihara
- Department of Physics, Waseda University, Tokyo 169-8555, Japan
| | - Kazuya Yuasa
- Department of Physics, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
10
|
Cherubim C, de Oliveira TR, Jonathan D. Nonadiabatic coupled-qubit Otto cycle with bidirectional operation and efficiency gains. Phys Rev E 2022; 105:044120. [PMID: 35590646 DOI: 10.1103/physreve.105.044120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
We study a quantum Otto cycle that uses a 2-qubit working substance whose Hamiltonian does not commute with itself at different times during unitary strokes. We investigate how the cycle responds to the loss of quantum adiabaticity when these strokes are operated with a finite duration. We find that qualitative features such as the possibility of counter-rotating cycles operating as heat engines, or a cycle efficiency that can increase with a decrease in the temperature difference between the baths, are resilient even to highly nonadiabatic strokes. However, cycle efficiency rapidly decreases, although it can still remain above the standard Otto value for small degrees of quantum nonadiabaticity.
Collapse
Affiliation(s)
- Cleverson Cherubim
- Instituto de Física, Universidade Federal Fluminense, Gragoatá 24210-346, Niterói, RJ, Brazil
| | - Thiago R de Oliveira
- Instituto de Física, Universidade Federal Fluminense, Gragoatá 24210-346, Niterói, RJ, Brazil
| | - Daniel Jonathan
- Instituto de Física, Universidade Federal Fluminense, Gragoatá 24210-346, Niterói, RJ, Brazil
| |
Collapse
|