1
|
Miranda JP, Levis D, Valeriani C. Collective motion of energy depot active disks. SOFT MATTER 2025; 21:1045-1053. [PMID: 39600192 DOI: 10.1039/d4sm00785a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
In the present work we have studied collectives of active disks with an energy depot, moving in the two-dimensional plane and interacting via an excluded volume. The energy depot accounts for the extraction of energy taking place at the level of each particle in order to perform self-propulsion, included in an underdamped Langevin dynamics. We show that this model undergoes a flocking transition, exhibiting some of the key features of the Vicsek model, namely, band formation and giant number fluctuations. These bands, either single or multiple, are dense and very strongly polarised propagating structures. Large density bands disappear as the activity is further increased, eventually reaching a homogeneous polar state. We unravel an effective alignment interaction at the level of two-particle collisions that can be controlled by activity and gives rise to flocking at large scales.
Collapse
Affiliation(s)
- Juan Pablo Miranda
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid 28040, Spain.
- GISC - Grupo Interdisciplinar de Sistemas Complejos, Madrid 28040, Spain
| | - Demian Levis
- Computing and Understanding Collective Action (CUCA) Lab, Condensed Matter Physics Department, Universitat de Barcelona, Marti i Franquès 1, Barcelona 08028, Spain.
- University of Barcelona Institute of Complex Systems (UBICS), Martí i Franquès 1, Barcelona E08028, Spain
| | - Chantal Valeriani
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid 28040, Spain.
- GISC - Grupo Interdisciplinar de Sistemas Complejos, Madrid 28040, Spain
| |
Collapse
|
2
|
Mondal K, Bera P, Ghosh P. Diverse morphology and motility induced emergent order in bacterial collectives. J Chem Phys 2024; 161:094908. [PMID: 39230379 DOI: 10.1063/5.0220700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
Microbial communities exhibit complex behaviors driven by species interactions and individual characteristics. In this study, we delve into the dynamics of a mixed bacterial population comprising two distinct species with different morphology and motility aspects. Employing agent-based modeling and computer simulations, we analyze the impacts of size ratios and packing fractions on dispersal patterns, aggregate formation, clustering, and spatial ordering. Notably, we find that motility and anisotropy of elongated bacteria significantly influence the distribution and spatial organization of nonmotile spherical species. Passive spherical cells display a superdiffusive behavior, particularly at larger size ratios in the ballistic regime. As the size ratio increases, clustering of passive cells is observed, accompanied by enhanced alignment and closer packing of active cells in the presence of higher passive cell area fractions. In addition, we identify the pivotal role of passive cell area fraction in influencing the response of active cells toward nematicity, with its dependence on size ratio. These findings shed light on the significance of morphology and motility in shaping the collective behavior of microbial communities, providing valuable insights into complex microbial behaviors with implications for ecology, biotechnology, and bioengineering.
Collapse
Affiliation(s)
- Kaustav Mondal
- Center for High-Performance Computing, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Palash Bera
- Tata Institute of Fundamental Research Hyderabad, Hyderabad, Telangana 500046, India
| | - Pushpita Ghosh
- Center for High-Performance Computing, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
3
|
Tiwari C, Singh SP. Collective dynamics of active dumbbells near a circular obstacle. SOFT MATTER 2024; 20:4816-4826. [PMID: 38855922 DOI: 10.1039/d4sm00044g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In this article, we present the collective dynamics of active dumbbells in the presence of a static circular obstacle using Brownian dynamics simulation. The active dumbbells aggregate on the surface of a circular obstacle beyond a critical radius. The aggregation is non-uniform along the circumference, and the aggregate size increases with the activity (Pe) and the curvature radius (Ro). The dense aggregate of active dumbbells displays persistent rotational motion with a certain angular speed, which linearly increases with activity. Furthermore, we show a strong polar ordering of the active dumbbells within the aggregate. The polar ordering exhibits long-range correlation, with the correlation length corresponding to the aggregate size. Additionally, we show that the residence time of an active dumbbell on the obstacle surface increases rapidly with area fraction due to many-body interactions that lead to a slowdown of the rotational diffusion. This article further considers the dynamical behavior of a tracer particle in the solution of active dumbbells. Interestingly, the speed of the passive tracer particle displays a crossover from monotonically decreasing to increasing with the size of the tracer particle upon increasing the dumbbells' speed. Furthermore, the effective diffusion of the tracer particle displays non-monotonic behavior with the area fraction; the initial increase in diffusivity is followed by a decrease for a larger area fraction.
Collapse
Affiliation(s)
- Chandranshu Tiwari
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462 066, Madhya Pradesh, India.
| | - Sunil P Singh
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462 066, Madhya Pradesh, India.
| |
Collapse
|
4
|
Anderson C, Fernandez-Nieves A. Active many-particle systems and the emergent behavior of dense ant collectives. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:066602. [PMID: 38804124 DOI: 10.1088/1361-6633/ad49b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
This article discusses recent work with fire ants,Solenopisis invicta, to illustrate the use of the framework of active matter as a base to rationalize their complex collective behavior. We review much of the work that physicists have done on the group dynamics of these ants, and compare their behavior to two minimal models of active matter, and to the behavior of the synthetic systems that have served to test and drive these models.
Collapse
Affiliation(s)
- C Anderson
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
| | - A Fernandez-Nieves
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
- Institute for Complex Systems (UBICS), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
5
|
Canavello D, Damascena RH, Cabral LRE, de Souza Silva CC. Polar order, shear banding, and clustering in confined active matter. SOFT MATTER 2024; 20:2310-2320. [PMID: 38363303 DOI: 10.1039/d3sm01721d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
We investigate the collective behavior of sterically interacting self-propelled particles confined in a harmonic potential. Our theoretical and numerical study unveils the emergence of distinctive collective polar organizations, revealing how different levels of interparticle torques and noise influence the system. The observed phases include the shear-banded vortex, where the system self organizes in two concentric bands rotating in opposite directions around the potential center; the uniform vortex, where the two bands merge into a close packed configuration rotating uniformly as a quasi-rigid body; and the orbiting polar state, characterized by parallel orientation vectors and the cluster revolving around the potential center, without rotation, as a rigid body. Intriguingly, at lower filling fractions, the vortex and polar phases merge into a single phase where the trapped cluster breaks into smaller polarized clusters, each one orbiting the potential center as a rigid body.
Collapse
Affiliation(s)
- Daniel Canavello
- Departamento de Física, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil.
| | - Rubens H Damascena
- Departamento de Física, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil.
| | - Leonardo R E Cabral
- Departamento de Física, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil.
| | - Clécio C de Souza Silva
- Departamento de Física, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil.
| |
Collapse
|
6
|
Spera G, Duclut C, Durand M, Tailleur J. Nematic Torques in Scalar Active Matter: When Fluctuations Favor Polar Order and Persistence. PHYSICAL REVIEW LETTERS 2024; 132:078301. [PMID: 38427854 DOI: 10.1103/physrevlett.132.078301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/12/2023] [Accepted: 01/08/2024] [Indexed: 03/03/2024]
Abstract
We study the impact of nematic alignment on scalar active matter in the disordered phase. We show that nematic torques control the emergent physics of particles interacting via pairwise forces and can either induce or prevent phase separation. The underlying mechanism is a fluctuation-induced renormalization of the mass of the polar field that generically arises from nematic torques. The correlations between the fluctuations of the polar and nematic fields indeed conspire to increase the particle persistence length, contrary to what phenomenological computations predict. This effect is generic and our theory also quantitatively accounts for how nematic torques enhance particle accumulation along confining boundaries and opposes demixing in mixtures of active and passive particles.
Collapse
Affiliation(s)
- Gianmarco Spera
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| | - Charlie Duclut
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
- Laboratoire Physique des Cellules et Cancer (PCC), CNRS UMR 168, Institut Curie, Université PSL, Sorbonne Université, 75005 Paris, France
| | - Marc Durand
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| | - Julien Tailleur
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
7
|
Karmakar M, Chatterjee S, Mangeat M, Rieger H, Paul R. Jamming and flocking in the restricted active Potts model. Phys Rev E 2023; 108:014604. [PMID: 37583144 DOI: 10.1103/physreve.108.014604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/21/2023] [Indexed: 08/17/2023]
Abstract
We study the active Potts model with either site occupancy restriction or on-site repulsion to explore jamming and kinetic arrest in a flocking model. The incorporation of such volume exclusion features leads to a surprisingly rich variety of self-organized spatial patterns. While bands and lanes of moving particles commonly occur without or under weak volume exclusion, strong volume exclusion along with low temperature, high activity, and large particle density facilitates jams due to motility-induced phase separation. Through several phase diagrams, we identify the phase boundaries separating the jammed and free-flowing phases and study the transition between these phases which provide us with both qualitative and quantitative predictions of how jamming might be delayed or dissolved. We further formulate and analyze a hydrodynamic theory for the restricted APM which predicts various features of the microscopic model.
Collapse
Affiliation(s)
- Mintu Karmakar
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Swarnajit Chatterjee
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Matthieu Mangeat
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Heiko Rieger
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
- INM-Leibniz Institute for New Materials, Campus D2 2, D-66123 Saarbrücken, Germany
| | - Raja Paul
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
8
|
Caprini L, Löwen H. Flocking without Alignment Interactions in Attractive Active Brownian Particles. PHYSICAL REVIEW LETTERS 2023; 130:148202. [PMID: 37084461 DOI: 10.1103/physrevlett.130.148202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Within a simple model of attractive active Brownian particles, we predict flocking behavior and challenge the widespread idea that alignment interactions are necessary to observe this collective phenomenon. Here, we show that even nonaligning attractive interactions can lead to a flocking state. Monitoring the velocity polarization as the order parameter, we reveal the onset of a first-order transition from a disordered phase, characterized by several small clusters, to a flocking phase, where a single flocking cluster is emerging. The scenario is confirmed by studying the spatial connected correlation function of particle velocities, which reveals scale-free behavior in flocking states and exponential-like decay for nonflocking configurations. Our predictions can be tested in microscopic and macroscopic experiments showing flocking, such as animals, migrating cells, and active colloids.
Collapse
Affiliation(s)
- L Caprini
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - H Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Abstract
The emergence of collective motion among interacting, self-propelled agents is a central paradigm in non-equilibrium physics. Examples of such active matter range from swimming bacteria and cytoskeletal motility assays to synthetic self-propelled colloids and swarming microrobots. Remarkably, the aggregation capabilities of many of these systems rely on a theme as fundamental as it is ubiquitous in nature: communication. Despite its eminent importance, the role of communication in the collective organization of active systems is not yet fully understood. Here we report on the multi-scale self-organization of interacting self-propelled agents that locally process information transmitted by chemical signals. We show that this communication capacity dramatically expands their ability to form complex structures, allowing them to self-organize through a series of collective dynamical states at multiple hierarchical levels. Our findings provide insights into the role of self-sustained signal processing for self-organization in biological systems and open routes to applications using chemically driven colloids or microrobots.
Collapse
|
10
|
Codina J, Mahault B, Chaté H, Dobnikar J, Pagonabarraga I, Shi XQ. Small Obstacle in a Large Polar Flock. PHYSICAL REVIEW LETTERS 2022; 128:218001. [PMID: 35687474 DOI: 10.1103/physrevlett.128.218001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
We show that arbitrarily large polar flocks are susceptible to the presence of a single small obstacle. In a wide region of parameter space, the obstacle triggers counterpropagating dense bands leading to reversals of the flow. In very large systems, these bands interact, yielding a never-ending chaotic dynamics that constitutes a new disordered phase of the system. While most of these results were obtained using simulations of aligning self-propelled particles, we find similar phenomena at the continuous level, not when considering the basic Toner-Tu hydrodynamic theory, but in simulations of truncations of the relevant Boltzmann equation.
Collapse
Affiliation(s)
- Joan Codina
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Benoît Mahault
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
| | - Hugues Chaté
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Computational Science Research Center, Beijing 100193, China
- Sorbonne Université, CNRS UMR7600, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| | - Jure Dobnikar
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems, 08028 Barcelona, Spain
- Centre Européen de Calcul Atomique et Moléculaire, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Xia-Qing Shi
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| |
Collapse
|
11
|
Bhattacharya K, Chakraborty A. Aggregation of self-propelled particles with sensitivity to local order. Phys Rev E 2022; 105:044124. [PMID: 35590585 DOI: 10.1103/physreve.105.044124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
Abstract
We study a system of self-propelled particles (SPPs) in which individual particles are allowed to switch between a fast aligning and a slow nonaligning state depending upon the degree of the alignment in the neighborhood. The switching is modeled using a threshold for the local order parameter. This additional attribute gives rise to a mixed phase, in contrast to the ordered phases found in clean SPP systems. As the threshold is increased from zero, we find the sudden appearance of clusters of nonaligners. Clusters of nonaligners coexist with moving clusters of aligners with continual coalescence and fragmentation. The behavior of the system with respect to the clustering of nonaligners appears to be very different for values of low and high global densities. In the low density regime, for an optimal value of the threshold, the largest cluster of nonaligners grows in size up to a maximum that varies logarithmically with the total number of particles. However, on further increasing the threshold the size decreases. In contrast, for the high density regime, an initial abrupt rise is followed by the appearance of a giant cluster of nonaligners. The latter growth can be characterized as a continuous percolation transition. In addition, we find that the speed differences between aligners and nonaligners is necessary for the segregation of aligners and nonaligners.
Collapse
Affiliation(s)
- Kunal Bhattacharya
- Department of Industrial Engineering and Management, Aalto University School of Science, 00076 Aalto, Finland
- Department of Computer Science, Aalto University School of Science, 00076 Aalto, Finland
| | - Abhijit Chakraborty
- Complexity Science Hub Vienna, Josefstaedter Strasse 39, 1080 Vienna, Austria
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, 1 Nakaadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8306, Japan
| |
Collapse
|