1
|
Yang Q, Jiang M, Picano F, Zhu L. Shaping active matter from crystalline solids to active turbulence. Nat Commun 2024; 15:2874. [PMID: 38570495 PMCID: PMC11258367 DOI: 10.1038/s41467-024-46520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Active matter drives its constituent agents to move autonomously by harnessing free energy, leading to diverse emergent states with relevance to both biological processes and inanimate functionalities. Achieving maximum reconfigurability of active materials with minimal control remains a desirable yet challenging goal. Here, we employ large-scale, agent-resolved simulations to demonstrate that modulating the activity of a wet phoretic medium alone can govern its solid-liquid-gas phase transitions and, subsequently, laminar-turbulent transitions in fluid phases, thereby shaping its emergent pattern. These two progressively emerging transitions, hitherto unreported, bring us closer to perceiving the parallels between active matter and traditional matter. Our work reproduces and reconciles seemingly conflicting experimental observations on chemically active systems, presenting a unified landscape of phoretic collective dynamics. These findings enhance the understanding of long-range, many-body interactions among phoretic agents, offer new insights into their non-equilibrium collective behaviors, and provide potential guidelines for designing reconfigurable materials.
Collapse
Affiliation(s)
- Qianhong Yang
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Maoqiang Jiang
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, Hubei, PR China
| | - Francesco Picano
- Department of Industrial Engineering and CISAS "G. Colombo", University of Padova, Padova, Italy
| | - Lailai Zhu
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Active Colloids on Fluid Interfaces. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Watanabe C, Tanaka S, Löffler RJG, Hanczyc MM, Górecki J. Dynamic ordering caused by a source-sink relation between two droplets. SOFT MATTER 2022; 18:6465-6474. [PMID: 35993153 DOI: 10.1039/d2sm00497f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two droplets composed of different chemicals, 1-decanol and liquid paraffin, floating on the water surface show characteristic co-responsive behavior. The presence of two different types of droplets in the system imposes an asymmetry that would not be possible with single droplets alone. The self-propulsion and interactions between droplets appear because surface active 1-decanol molecules provided by the source are absorbed by the paraffin sink thus generating an asymmetric surface tension gradient. This source-sink relation between droplets stabilizes and enhances the self-propulsion, and leads to a variety of dynamic structures including oscillations in the inter-droplet distance. We found that the character of time evolution also depends on the concentration of dye, Sudan Black B, initially used just to stain the decanol droplet. A simple mathematical model explains the transition between the stationary state and the oscillations as a Hopf bifurcation.
Collapse
Affiliation(s)
- Chiho Watanabe
- Graduate School of Integrated Sciences for life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan.
| | - Shinpei Tanaka
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan
| | - Richard J G Löffler
- Laboratory for Artificial Biology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Polo Scientifico e Tecnologico Fabio Ferrari, Polo B, Via Sommarive 9, Povo, 38123, Trentino Alto-Adige, Italy
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Martin M Hanczyc
- Laboratory for Artificial Biology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Polo Scientifico e Tecnologico Fabio Ferrari, Polo B, Via Sommarive 9, Povo, 38123, Trentino Alto-Adige, Italy
- Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Jerzy Górecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|