1
|
Goychuk A, Kannan D, Kardar M. Delayed Excitations Induce Polymer Looping and Coherent Motion. PHYSICAL REVIEW LETTERS 2024; 133:078101. [PMID: 39213554 DOI: 10.1103/physrevlett.133.078101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
We consider inhomogeneous polymers driven by energy-consuming active processes which encode temporal patterns of athermal kicks. We find that such temporal excitation programs, propagated by tension along the polymer, can effectively couple distinct polymer loci. Consequently, distant loci exhibit correlated motions that fold the polymer into specific conformations, as set by the local actions of the active processes and their distribution along the polymer. Interestingly, active kicks that are canceled out by a time-delayed echo can induce strong compaction of the active polymer.
Collapse
|
2
|
Valido AA, Coccolo M, Sanjuán MAF. Time-delayed Duffing oscillator in an active bath. Phys Rev E 2023; 108:064205. [PMID: 38243436 DOI: 10.1103/physreve.108.064205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/17/2023] [Indexed: 01/21/2024]
Abstract
During recent decades active particles have attracted an incipient attention as they have been observed in a broad class of scenarios, ranging from bacterial suspension in living systems to artificial swimmers in nonequilibirum systems. The main feature of these particles is that they are able to gain kinetic energy from the environment, which is widely modeled by a stochastic process due to both (Gaussian) white and Ornstein-Uhlenbeck noises. In the present work, we study the nonlinear dynamics of the forced, time-delayed Duffing oscillator subject to these noises, paying special attention to their impact upon the maximum oscillations amplitude and characteristic frequency of the steady state for different values of the time delay and the driving force. Overall, our results indicate that the role of the time delay is substantially modified with respect to the situation without noise. For instance, we show that the oscillations amplitude grows with increasing noise strength when the time delay acts as a damping term in absence of noise, whereas the trajectories eventually become aperiodic when the oscillations are sustained by the time delay. In short, the interplay among the noises, forcing, and time delay gives rise to a rich dynamics: a regular and periodic motion is destroyed or restored owing to the competition between the noise and the driving force depending on time delay values, whereas an erratic motion insensitive to the driving force emerges when the time delay makes the motion aperiodic. Interestingly, we also show that, for a sufficient noise strength and forcing amplitude, an approximately periodic interwell motion is promoted by means of stochastic resonance.
Collapse
Affiliation(s)
- Antonio A Valido
- Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Mattia Coccolo
- Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Miguel A F Sanjuán
- Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain
| |
Collapse
|
3
|
Dutta S, Ghosh A, Boettiger AN, Spakowitz AJ. Leveraging polymer modeling to reconstruct chromatin connectivity from live images. Biophys J 2023; 122:3532-3540. [PMID: 37542372 PMCID: PMC10502477 DOI: 10.1016/j.bpj.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/19/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023] Open
Abstract
Chromosomal dynamics plays a central role in a number of critical biological processes, such as transcriptional regulation, genetic recombination, and DNA replication. However, visualization of chromatin is generally limited to live imaging of a few fluorescently labeled chromosomal loci or high-resolution reconstruction of multiple loci from a single time frame. To aid in mapping the underlying chromosomal structure based on parsimonious experimental measurements, we present an exact analytical expression for the evolution of the polymer configuration based on a flexible-polymer model, and we propose an algorithm that tracks the polymer configuration from live images of chromatin marked with several fluorescent marks. Our theory identifies the resolution of microscopy needed to achieve high-accuracy tracking for a given spacing of markers, establishing the statistical confidence in the assignment of genome identity to the visualized marks. We then leverage experimental data of locus-tracking measurements to demonstrate the validity of our modeling approach and to establish a basis for the design of experiments with a desired resolution. Altogether, this work provides a computational approach founded on polymer physics that vastly improves the interpretation of in vivo measurements of biopolymer dynamics.
Collapse
Affiliation(s)
- Sayantan Dutta
- Department of Chemical Engineering, Stanford University, Stanford, California
| | - Ashesh Ghosh
- Department of Chemical Engineering, Stanford University, Stanford, California
| | | | - Andrew J Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, California; Department of Materials Science and Engineering, Stanford University, Stanford, California; Program in Biophysics, Stanford University, Stanford, California.
| |
Collapse
|
4
|
Saha TK, Ehrich J, Gavrilov M, Still S, Sivak DA, Bechhoefer J. Information Engine in a Nonequilibrium Bath. PHYSICAL REVIEW LETTERS 2023; 131:057101. [PMID: 37595211 DOI: 10.1103/physrevlett.131.057101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 06/29/2023] [Indexed: 08/20/2023]
Abstract
Information engines can convert thermal fluctuations of a bath at temperature T into work at rates of order k_{B}T per relaxation time of the system. We show experimentally that such engines, when in contact with a bath that is out of equilibrium, can extract much more work. We place a heavy, micron-scale bead in a harmonic potential that ratchets up to capture favorable fluctuations. Adding a fluctuating electric field increases work extraction up to ten times, limited only by the strength of the applied field. Our results connect Maxwell's demon with energy harvesting and demonstrate that information engines in nonequilibrium baths can greatly outperform conventional engines.
Collapse
Affiliation(s)
- Tushar K Saha
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 Canada
| | - Jannik Ehrich
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 Canada
- Department of Physics and Astronomy, University of Hawaii at Mānoa, Honolulu, Hawaii 96822, USA
| | - Momčilo Gavrilov
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 Canada
| | - Susanne Still
- Department of Physics and Astronomy, University of Hawaii at Mānoa, Honolulu, Hawaii 96822, USA
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 Canada
| | - John Bechhoefer
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 Canada
| |
Collapse
|
5
|
Goychuk A, Kannan D, Chakraborty AK, Kardar M. Polymer folding through active processes recreates features of genome organization. Proc Natl Acad Sci U S A 2023; 120:e2221726120. [PMID: 37155885 PMCID: PMC10194017 DOI: 10.1073/pnas.2221726120] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/02/2023] [Indexed: 05/10/2023] Open
Abstract
From proteins to chromosomes, polymers fold into specific conformations that control their biological function. Polymer folding has long been studied with equilibrium thermodynamics, yet intracellular organization and regulation involve energy-consuming, active processes. Signatures of activity have been measured in the context of chromatin motion, which shows spatial correlations and enhanced subdiffusion only in the presence of adenosine triphosphate. Moreover, chromatin motion varies with genomic coordinate, pointing toward a heterogeneous pattern of active processes along the sequence. How do such patterns of activity affect the conformation of a polymer such as chromatin? We address this question by combining analytical theory and simulations to study a polymer subjected to sequence-dependent correlated active forces. Our analysis shows that a local increase in activity (larger active forces) can cause the polymer backbone to bend and expand, while less active segments straighten out and condense. Our simulations further predict that modest activity differences can drive compartmentalization of the polymer consistent with the patterns observed in chromosome conformation capture experiments. Moreover, segments of the polymer that show correlated active (sub)diffusion attract each other through effective long-ranged harmonic interactions, whereas anticorrelations lead to effective repulsions. Thus, our theory offers nonequilibrium mechanisms for forming genomic compartments, which cannot be distinguished from affinity-based folding using structural data alone. As a first step toward exploring whether active mechanisms contribute to shaping genome conformations, we discuss a data-driven approach.
Collapse
Affiliation(s)
- Andriy Goychuk
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Deepti Kannan
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Arup K. Chakraborty
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
6
|
Ghosh A, Spakowitz AJ. Active and thermal fluctuations in multi-scale polymer structure and dynamics. SOFT MATTER 2022; 18:6629-6637. [PMID: 36000419 DOI: 10.1039/d2sm00593j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The presence of athermal noise or biological fluctuations control and maintain crucial life-processes. In this work, we present an exact analytical treatment of the dynamic behavior of a flexible polymer chain that is subjected to both thermal and active forces. Our model for active forces incorporates temporal correlation associated with the characteristic time scale and processivity of enzymatic function (driven by ATP hydrolysis), leading to an active-force time scale that competes with relaxation processes within the polymer chain. We analyze the structure and dynamics of an active-Brownian polymer using our exact results for the dynamic structure factor and the looping time for the chain ends. The spectrum of relaxation times within a polymer chain implies two different behaviors at small and large length scales. Small length-scale relaxation is faster than the active-force time scale, and the dynamic and structural behavior at these scales are oblivious to active forces and, are thus governed by the true thermal temperature. Large length-scale behavior is governed by relaxation times that are much longer than the active-force time scale, resulting in an effective active-Brownian temperature that dramatically alters structural and dynamic behavior. These complex multi-scale effects imply a time-dependent temperature that governs living and non-equilibrium systems, serving as a unifying concept for interpreting and predicting their physical behavior.
Collapse
Affiliation(s)
- Ashesh Ghosh
- Department of Chemical Engineering, Stanford University, Stanford, California, USA.
| | - Andrew J Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, California, USA.
- Biophysics Program, Stanford University, Stanford, California, USA
- Department of Materials Science & Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
7
|
Caprini L, Sprenger AR, Löwen H, Wittmann R. The parental active model: A unifying stochastic description of self-propulsion. J Chem Phys 2022; 156:071102. [DOI: 10.1063/5.0084213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Lorenzo Caprini
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Alexander R. Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|