1
|
Wang Z, Yu N, Reichhardt C, Reichhardt CJO, Xu A, Chen X, Feng Y. Shapiro steps observed in a two-dimensional Yukawa solid modulated by a one-dimensional vibrational periodic substrate. Phys Rev E 2025; 111:035202. [PMID: 40247524 DOI: 10.1103/physreve.111.035202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/21/2025] [Indexed: 04/19/2025]
Abstract
Depinning dynamics of a two-dimensional (2D) solid dusty plasma modulated by a one-dimensional (1D) vibrational periodic substrate are investigated using Langevin dynamical simulations. As the uniform driving force increases gradually, from the overall drift velocity varying with the driving force, four significant Shapiro steps are discovered. The data analysis results indicate that, when the ratio of the frequency from the drift motion over potential wells to the external frequency from the modulation substrate is close to integers, dynamic mode locking occurs, corresponding to the discovered Shapiro steps. Around both termini of the first and fourth Shapiro steps, the transitions are found to be always continuous, however, the transition between the second and third Shapiro steps is discontinuous, probably due to the different arrangements of particles.
Collapse
Affiliation(s)
- Zhaoye Wang
- Soochow University, Institute of Plasma Physics and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Suzhou 215006, China
| | - Nichen Yu
- Soochow University, Institute of Plasma Physics and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Suzhou 215006, China
| | - C Reichhardt
- Los Alamos National Laboratory, Theoretical Division, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Los Alamos National Laboratory, Theoretical Division, Los Alamos, New Mexico 87545, USA
| | - Ao Xu
- Soochow University, Institute of Plasma Physics and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Suzhou 215006, China
| | - Xin Chen
- Soochow University, Institute of Plasma Physics and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Suzhou 215006, China
| | - Yan Feng
- Soochow University, Institute of Plasma Physics and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Suzhou 215006, China
| |
Collapse
|
2
|
P AM, Joseph T. Anti-matching effect in a two dimensional driven vortex lattice in the presence of periodic pinning. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:495401. [PMID: 39191271 DOI: 10.1088/1361-648x/ad743c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
The dynamics of a driven superconducting vortex lattice in a two-dimensional (2D) periodic potential of square symmetry is studied using Brownian dynamics simulations. The range and strength of the vortex-substrate interaction are taken to be of the same order as that of the vortex-vortex interaction. The matching effect in a driven vortex lattice in the presence of a periodic array of pinning centers refers to the enhanced resistance to the vortex lattice motion when the ratio of the number of vortices to the number of pinning centers (called the filling fraction) takes simple fractional values. In particular, one expects a pronounced matching effect when the filling fraction is one. Contrary to this expectation, a drop in the vortex lattice mobility is observed as the filling fraction is increased from value one. This anti-matching effect can be understood in terms of the structural change in the vortex lattice as the filling fraction is varied. The dip observed in vortex mobility as a function of temperature when the filling fraction equals one (Joseph T 2020PhysicaA556124737), is studied for other values of filling above and below one. The behavior is found to persist for other fillings as well and is associated with the melting of the vortex lattice. The temperature at which the lattice melts is found to increase with drive and explains the shift in the temperature at which mobility is a minimum, locally.
Collapse
Affiliation(s)
- Akhilesh M P
- Department of Physics, BITS-Pilani, K K Birla Goa Campus, Zuarinagar Goa-403726, India
| | - Toby Joseph
- Department of Physics, BITS-Pilani, K K Birla Goa Campus, Zuarinagar Goa-403726, India
| |
Collapse
|
3
|
Abdoli I, Löwen H, Sommer JU, Sharma A. Tailoring the escape rate of a Brownian particle by combining a vortex flow with a magnetic field. J Chem Phys 2023; 158:101101. [PMID: 36922145 DOI: 10.1063/5.0139830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
The probability per unit time for a thermally activated Brownian particle to escape over a potential well is, in general, well-described by Kramers's theory. Kramers showed that the escape time decreases exponentially with increasing barrier height. The dynamics slow down when the particle is charged and subjected to a Lorentz force due to an external magnetic field. This is evident via a rescaling of the diffusion coefficient entering as a prefactor in the Kramers's escape rate without any impact on the barrier-height-dependent exponent. Here, we show that the barrier height can be effectively changed when the charged particle is subjected to a vortex flow. While the vortex alone does not affect the mean escape time of the particle, when combined with a magnetic field, it effectively pushes the fluctuating particle either radially outside or inside depending on its sign relative to that of the magnetic field. In particular, the effective potential over which the particle escapes can be changed to a flat, a stable, and an unstable potential by tuning the signs and magnitudes of the vortex and the applied magnetic field. Notably, the last case corresponds to enhanced escape dynamics.
Collapse
Affiliation(s)
- I Abdoli
- Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden, Germany
| | - H Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225, Germany
| | - J-U Sommer
- Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden, Germany
| | - A Sharma
- Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden, Germany
| |
Collapse
|
4
|
Huang Y, Reichhardt C, Reichhardt CJO, Feng Y. Superlubric-pinned transition of a two-dimensional solid dusty plasma under a periodic triangular substrate. Phys Rev E 2022; 106:035204. [PMID: 36266846 DOI: 10.1103/physreve.106.035204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The superlubric-pinned transition in the depinning dynamics of a two-dimensional (2D) solid dusty plasma modulated by 2D triangular periodic substrates is investigated using Langevin dynamical simulations. When the lattice structure of the 2D solid dusty plasma perfectly matches the triangular substrate, two distinctive pinned and moving ordered states are observed as the external uniform driving force gradually increases from zero. When there is a mismatch between the lattice structure and the triangular substrate, however, on shallow substrates, it is discovered that all of the particles can slide freely on the substrate even when the applied driving force is tiny. This is a typical example of superlubricity, which is caused by the competition between the substrate-particle and particle-particle interactions. If the substrate depth increases further, as the driving force increases from zero, there are three dynamical states consisting of the pinned state, the disordered plastic flow state, and the moving ordered state. In an underdense system, where there are fewer particles than potential well minima, it is found that the occurrence of the three different dynamical states is controlled by the depth of the substrate, which is quantitatively characterized using the average mobility.
Collapse
Affiliation(s)
- Y Huang
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Yan Feng
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Zhu W, Reichhardt C, Reichhardt CJO, Feng Y. Directional locking in a two-dimensional Yukawa solid modulated by a two-dimensional periodic substrate. Phys Rev E 2022; 106:015202. [PMID: 35974594 DOI: 10.1103/physreve.106.015202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Directional depinning dynamics of a two-dimensional (2D) dusty plasma solid modulated by a 2D square periodic substrate are investigated using Langevin dynamical simulations. We observe prominent directional locking effects when the direction of the external driving force is varied relative to the underlying square substrate. These locking steps appear when the direction of the driving force is close to the symmetry direction of the substrate, corresponding to the different dynamical flow patterns and the structures. In the conditions between the adjacent locking steps, moving ordered states are observed. Although the discontinuous transitions often occur between the locking steps and the nonlocking portion, the continuous transitions are also found around the locking step associated with the disordered plastic flow close to its termini. Our results show that directional locking also occurs for underdamped systems, which could be tested experimentally in dusty plasmas modulated by 2D substrates.
Collapse
Affiliation(s)
- Wenqi Zhu
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Yan Feng
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|