1
|
Pope M, Seguin C, Varley TF, Faskowitz J, Sporns O. Co-evolving dynamics and topology in a coupled oscillator model of resting brain function. Neuroimage 2023; 277:120266. [PMID: 37414231 DOI: 10.1016/j.neuroimage.2023.120266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/24/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023] Open
Abstract
Dynamic models of ongoing BOLD fMRI brain dynamics and models of communication strategies have been two important approaches to understanding how brain network structure constrains function. However, dynamic models have yet to widely incorporate one of the most important insights from communication models: the brain may not use all of its connections in the same way or at the same time. Here we present a variation of a phase delayed Kuramoto coupled oscillator model that dynamically limits communication between nodes on each time step. An active subgraph of the empirically derived anatomical brain network is chosen in accordance with the local dynamic state on every time step, thus coupling dynamics and network structure in a novel way. We analyze this model with respect to its fit to empirical time-averaged functional connectivity, finding that, with the addition of only one parameter, it significantly outperforms standard Kuramoto models with phase delays. We also perform analyses on the novel time series of active edges it produces, demonstrating a slowly evolving topology moving through intermittent episodes of integration and segregation. We hope to demonstrate that the exploration of novel modeling mechanisms and the investigation of dynamics of networks in addition to dynamics on networks may advance our understanding of the relationship between brain structure and function.
Collapse
Affiliation(s)
- Maria Pope
- Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States; School of Informatics, Computing & Engineering, Indiana University, Bloomington, IN 47405, United States.
| | - Caio Seguin
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States
| | - Thomas F Varley
- School of Informatics, Computing & Engineering, Indiana University, Bloomington, IN 47405, United States; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States
| | - Olaf Sporns
- Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States; Network Science Institute, Indiana University, Bloomington, IN 47405, United States; Cognitive Science Program, Indiana University, Bloomington, IN 47405, United States
| |
Collapse
|
2
|
Ramezanian-Panahi M, Abrevaya G, Gagnon-Audet JC, Voleti V, Rish I, Dumas G. Generative Models of Brain Dynamics. Front Artif Intell 2022; 5:807406. [PMID: 35910192 PMCID: PMC9335006 DOI: 10.3389/frai.2022.807406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/10/2022] [Indexed: 01/28/2023] Open
Abstract
This review article gives a high-level overview of the approaches across different scales of organization and levels of abstraction. The studies covered in this paper include fundamental models in computational neuroscience, nonlinear dynamics, data-driven methods, as well as emergent practices. While not all of these models span the intersection of neuroscience, AI, and system dynamics, all of them do or can work in tandem as generative models, which, as we argue, provide superior properties for the analysis of neuroscientific data. We discuss the limitations and unique dynamical traits of brain data and the complementary need for hypothesis- and data-driven modeling. By way of conclusion, we present several hybrid generative models from recent literature in scientific machine learning, which can be efficiently deployed to yield interpretable models of neural dynamics.
Collapse
Affiliation(s)
| | - Germán Abrevaya
- Mila-Quebec AI Institute, Montréal, QC, Canada
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Instituto de Física de Buenos Aires (IFIBA), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Vikram Voleti
- Mila-Quebec AI Institute, Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
| | - Irina Rish
- Mila-Quebec AI Institute, Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
| | - Guillaume Dumas
- Mila-Quebec AI Institute, Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
- Department of Psychiatry, CHU Sainte-Justine Research Center, Mila-Quebec AI Institute, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|