Freitas JN, Esposito M. Emergent second law for non-equilibrium steady states.
Nat Commun 2022;
13:5084. [PMID:
36038545 PMCID:
PMC9424242 DOI:
10.1038/s41467-022-32700-7]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/10/2022] [Indexed: 01/14/2023] Open
Abstract
The Gibbs distribution universally characterizes states of thermal equilibrium. In order to extend the Gibbs distribution to non-equilibrium steady states, one must relate the self-information \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{{{{{{\mathcal{I}}}}}}}}(x)=-\!\log ({P}_{{{{{{{{\rm{ss}}}}}}}}}(x))$$\end{document}I(x)=−log(Pss(x)) of microstate x to measurable physical quantities. This is a central problem in non-equilibrium statistical physics. By considering open systems described by stochastic dynamics which become deterministic in the macroscopic limit, we show that changes \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\Delta }}{{{{{{{\mathcal{I}}}}}}}}={{{{{{{\mathcal{I}}}}}}}}({x}_{t})-{{{{{{{\mathcal{I}}}}}}}}({x}_{0})$$\end{document}ΔI=I(xt)−I(x0) in steady state self-information along deterministic trajectories can be bounded by the macroscopic entropy production Σ. This bound takes the form of an emergent second law \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\Sigma }}+{k}_{b}{{\Delta }}{{{{{{{\mathcal{I}}}}}}}}\,\ge \,0$$\end{document}Σ+kbΔI≥0, which contains the usual second law Σ ≥ 0 as a corollary, and is saturated in the linear regime close to equilibrium. We thus obtain a tighter version of the second law of thermodynamics that provides a link between the deterministic relaxation of a system and the non-equilibrium fluctuations at steady state. In addition to its fundamental value, our result leads to novel methods for computing non-equilibrium distributions, providing a deterministic alternative to Gillespie simulations or spectral methods.
Contrary to states of thermal equilibrium, there is no universal characterization of non-equilibrium steady states displaying constant flows of energy and/or matter. Here, the authors make progress in this direction by deriving an emergent and stricter version of the second law of thermodynamics.
Collapse