1
|
Van Vu T, Hayakawa H. Thermomajorization Mpemba Effect. PHYSICAL REVIEW LETTERS 2025; 134:107101. [PMID: 40153644 DOI: 10.1103/physrevlett.134.107101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/06/2025] [Indexed: 03/30/2025]
Abstract
The Mpemba effect is a counterintuitive physical phenomenon where a hot system cools faster than a warm one. In recent years, theoretical analyses of the Mpemba effect have been developed for microscopic systems and experimentally verified. However, the conventional theory relies on a specific choice of distance measure to quantify relaxation speed, leading to several theoretical ambiguities. In this Letter, we derive a rigorous quantification of the Mpemba effect based on thermomajorization theory, referred to as the thermomajorization Mpemba effect. This approach resolves all existing ambiguities and provides a unification of the conventional Mpemba effect across all monotone measures. Furthermore, we demonstrate the generality of the thermomajorization Mpemba effect for Markovian dynamics, rigorously proving that it can occur in any temperature regime with fixed energy levels.
Collapse
Affiliation(s)
- Tan Van Vu
- Yukawa Institute for Theoretical Physics, Center for Gravitational Physics and Quantum Information, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Center for Gravitational Physics and Quantum Information, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Xu Y, Ruan H, Luo S, Guo S, He X, Wang J. Enhancing Otto refrigerator performance with a precooling strategy. Phys Rev E 2025; 111:L022101. [PMID: 40103156 DOI: 10.1103/physreve.111.l022101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/14/2025] [Indexed: 03/20/2025]
Abstract
The precooling strategy, which leads to exponentially faster heating, is a counterintuitive relaxation phenomenon wherein cooling the system before heating it dramatically shortens the relaxation time. We investigate the performance of a Markovian system functioning as an Otto refrigerator for a finite time, incorporating a precooling stage before the cyclic heating process. Our results demonstrate that precooling prior to the heating process in the Otto cycle optimizes the machine's performance by significantly enhancing the machine performance and the stability of the refrigerator.
Collapse
Affiliation(s)
- Yang Xu
- Nanchang University, Department of Physics, Nanchang 330031, China
| | - Huilin Ruan
- Nanchang University, Department of Physics, Nanchang 330031, China
| | - Shaolin Luo
- Nanchang University, Department of Physics, Nanchang 330031, China
| | - Shouhui Guo
- Nanchang University, Department of Physics, Nanchang 330031, China
| | - Xian He
- Nanchang University, Department of Physics, Nanchang 330031, China
| | - Jianhui Wang
- Nanchang University, Department of Physics, Nanchang 330031, China
- Fudan University, State Key Laboratory of Surface Physics and Department of Physics, Shanghai 200433, China
| |
Collapse
|
3
|
Nava A, Egger R. Mpemba Effects in Open Nonequilibrium Quantum Systems. PHYSICAL REVIEW LETTERS 2024; 133:136302. [PMID: 39392945 DOI: 10.1103/physrevlett.133.136302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/03/2024] [Indexed: 10/13/2024]
Abstract
We generalize the classical thermal Mpemba effect (where an initially hot system relaxes faster to the final equilibrium state than a cold one) to open quantum systems coupled to several reservoirs. We show that, in general, two different types of quantum Mpemba effects are possible. They may be distinguished by quantum state tomography. However, the existence of a quantum Mpemba effect (without determining the type) can already be established by measuring simpler observables such as currents or energies. We illustrate our general results for the experimentally feasible case of an interacting two-site Kitaev model coupled to two metallic leads.
Collapse
|
4
|
Santos A. Mpemba meets Newton: Exploring the Mpemba and Kovacs effects in the time-delayed cooling law. Phys Rev E 2024; 109:044149. [PMID: 38755857 DOI: 10.1103/physreve.109.044149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024]
Abstract
Despite extensive research, the fundamental physical mechanisms underlying the Mpemba effect, a phenomenon where a substance cools faster after initially being heated, remain elusive. Although historically linked with water, the Mpemba effect manifests across diverse systems, sparking heightened interest in Mpemba-like phenomena. Concurrently, the Kovacs effect, a memory phenomenon observed in materials such as polymers, involves rapid quenching and subsequent temperature changes, resulting in nonmonotonic relaxation behavior. This paper probes the intricacies of the Mpemba and Kovacs effects within the framework of the time-delayed Newton's law of cooling, recognized as a simplistic yet effective phenomenological model accommodating memory phenomena. This law allows for a nuanced comprehension of temperature variations, introducing a delay time (τ) and incorporating specific protocols for the thermal bath temperature, contingent on a defined waiting time (t_{w}). Remarkably, the relevant parameter space is two-dimensional (τ and t_{w}), with bath temperatures exerting no influence on the presence or absence of the Mpemba effect or on the relative strength of the Kovacs effect. The findings enhance our understanding of these memory phenomena, providing valuable insights applicable to researchers across diverse fields, ranging from physics to materials science.
Collapse
Affiliation(s)
- Andrés Santos
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006 Badajoz, Spain
| |
Collapse
|
5
|
Patrón A, Sánchez-Rey B, Prados A. Kinetic glass transition in granular gases and nonlinear molecular fluids. Phys Rev E 2024; 109:044137. [PMID: 38755825 DOI: 10.1103/physreve.109.044137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/18/2024] [Indexed: 05/18/2024]
Abstract
In this paper, we investigate, both analytically and numerically, the emergence of a kinetic glass transition in two different model systems: a uniformly heated granular gas and a molecular fluid with nonlinear drag. Despite the profound differences between these two physical systems, their behavior in thermal cycles share strong similarities, which stem from the relaxation time diverging algebraically at low temperatures for both systems. When the driving intensity--for the granular gas-or the bath temperature-for the molecular fluid-is decreased to sufficiently low values, the kinetic temperature of both systems becomes "frozen" at a value that depends on the cooling rate through a power law with the same exponent. Interestingly, this frozen glassy state is universal in the following sense: for a suitable rescaling of the relevant variables, its velocity distribution function becomes independent of the cooling rate. Upon reheating, i.e., when either the driving intensity or the bath temperature is increased from this frozen state, hysteresis cycles arise and the apparent heat capacity displays a maximum. The numerical results obtained from the simulations are well described by a perturbative approach.
Collapse
Affiliation(s)
- A Patrón
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | - B Sánchez-Rey
- Departamento de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, E-41011 Sevilla, Spain
| | - A Prados
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| |
Collapse
|
6
|
Pemartín IGA, Mompó E, Lasanta A, Martín-Mayor V, Salas J. Shortcuts of Freely Relaxing Systems Using Equilibrium Physical Observables. PHYSICAL REVIEW LETTERS 2024; 132:117102. [PMID: 38563945 DOI: 10.1103/physrevlett.132.117102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/15/2023] [Accepted: 01/18/2024] [Indexed: 04/04/2024]
Abstract
Many systems, when initially placed far from equilibrium, exhibit surprising behavior in their attempt to equilibrate. Striking examples are the Mpemba effect and the cooling-heating asymmetry. These anomalous behaviors can be exploited to shorten the time needed to cool down (or heat up) a system. Though, a strategy to design these effects in mesoscopic systems is missing. We bring forward a description that allows us to formulate such strategies, and, along the way, makes natural these paradoxical behaviors. In particular, we study the evolution of macroscopic physical observables of systems freely relaxing under the influence of one or two instantaneous thermal quenches. The two crucial ingredients in our approach are timescale separation and a nonmonotonic temperature evolution of an important state function. We argue that both are generic features near a first-order transition. Our theory is exemplified with the one-dimensional Ising model in a magnetic field using analytic results and numerical experiments.
Collapse
Affiliation(s)
| | - Emanuel Mompó
- Departamento de Matemática Aplicada, Grupo de Dinámica No Lineal, Universidad Pontificia Comillas, Alberto Aguilera 25, 28015 Madrid, Spain
- Instituto de Investigación Tecnológica (IIT), Universidad Pontificia Comillas, 28015 Madrid, Spain
| | - Antonio Lasanta
- Departamento de Álgebra, Facultad de Educación, Economía y Tecnología de Ceuta, Universidad de Granada, Cortadura del Valle, s/n, 51001 Ceuta, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada, Spain
- Nanoparticles Trapping Laboratory, Universidad de Granada, Granada, Spain
| | - Víctor Martín-Mayor
- Departamento de Física Teórica, Universidad Complutense, 28040 Madrid, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018 Zaragoza, Spain
| | - Jesús Salas
- Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Spain
- Grupo de Teorías de Campos y Física Estadística, Instituto Gregorio Millán, Universidad Carlos III de Madrid, Unidad Asociada al Instituto de Estructura de la Materia, CSIC, Spain
| |
Collapse
|
7
|
Chatterjee AK, Takada S, Hayakawa H. Quantum Mpemba Effect in a Quantum Dot with Reservoirs. PHYSICAL REVIEW LETTERS 2023; 131:080402. [PMID: 37683159 DOI: 10.1103/physrevlett.131.080402] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/17/2023] [Indexed: 09/10/2023]
Abstract
We demonstrate the quantum Mpemba effect in a quantum dot coupled to two reservoirs, described by the Anderson model. We show that the system temperatures starting from two different initial values (hot and cold) cross each other at finite time (and thereby reverse their identities; i.e., hot becomes cold and vice versa) to generate thermal quantum Mpemba effect. The slowest relaxation mode believed to play the dominating role in Mpemba effect in Markovian systems does not contribute to such anomalous relaxation in the present model. In this connection, our analytical result provides necessary condition for producing quantum Mpemba effect in the density matrix elements of the quantum dot, as a combined effect of the remaining relaxation modes.
Collapse
Affiliation(s)
- Amit Kumar Chatterjee
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Satoshi Takada
- Department of Mechanical Systems Engineering and Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
8
|
Biswas A, Prasad VV, Rajesh R. Mpemba effect in driven granular gases: Role of distance measures. Phys Rev E 2023; 108:024902. [PMID: 37723801 DOI: 10.1103/physreve.108.024902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/25/2023] [Indexed: 09/20/2023]
Abstract
The Mpemba effect refers to the counterintuitive effect where a system which is initially further from the final steady state equilibrates faster than an identical system that is initially closer. The closeness to the final state is defined in terms of a distance measure. For driven granular systems, the Mpemba effect has been illustrated in terms of an ad hoc measure of mean kinetic energy as the distance function. In this paper, by studying four different distance measures based on the mean kinetic energies as well as velocity distribution, we show that the Mpemba effect depends on the definition of the measures.
Collapse
Affiliation(s)
- Apurba Biswas
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - V V Prasad
- Department of Physics, Cochin University of Science and Technology, Kochi 682022, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
9
|
Amorim F, Wisely J, Buckley N, DiNardo C, Sadasivan D. Predicting the Mpemba effect using machine learning. Phys Rev E 2023; 108:024137. [PMID: 37723698 DOI: 10.1103/physreve.108.024137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 08/01/2023] [Indexed: 09/20/2023]
Abstract
The Mpemba effect can be studied with Markovian dynamics in a nonequilibrium thermodynamics framework. The Markovian Mpemba effect can be observed in a variety of systems including the Ising model. We demonstrate that the Markovian Mpemba effect can be predicted in the Ising model with several machine learning methods: the decision tree algorithm, neural networks, linear regression, and nonlinear regression with the least absolute shrinkage and selection operator (LASSO) method. The positive and negative accuracy of these methods are compared. Additionally, we find that machine learning methods can be used to accurately extrapolate to data outside the range in which they were trained. Neural networks can even predict the existence of the Mpemba effect when they are trained only on data in which the Mpemba effect does not occur. This indicates that information about which coefficients result in the Mpemba effect is contained in coefficients where the results does not occur. Furthermore, neural networks can predict that the Mpemba effect does not occur for positive J, corresponding to the ferromagnetic Ising model even when they are only trained on negative J, corresponding to the antiferromagnetic Ising model. All of these results demonstrate that the Mpemba effect can be predicted in complex, computationally expensive systems, without explicit calculations of the eigenvectors.
Collapse
Affiliation(s)
| | - Joey Wisely
- Ave Maria University, Ave Maria, Florida 34142, USA
| | | | | | | |
Collapse
|
10
|
Teza G, Yaacoby R, Raz O. Relaxation Shortcuts through Boundary Coupling. PHYSICAL REVIEW LETTERS 2023; 131:017101. [PMID: 37478423 DOI: 10.1103/physrevlett.131.017101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/06/2022] [Accepted: 05/17/2023] [Indexed: 07/23/2023]
Abstract
When a hot system cools down faster than an equivalent cold one, it exhibits the Mpemba effect (ME). This counterintuitive phenomenon was observed in several systems including water, magnetic alloys, and polymers. In most experiments the system is coupled to the bath through its boundaries, but all theories so far assumed bulk coupling. Here we build a general framework to characterize anomalous relaxations through boundary coupling, and present two emblematic setups: a diffusing particle and an Ising antiferromagnet. In the latter, we show that the ME can survive even arbitrarily weak couplings.
Collapse
Affiliation(s)
- Gianluca Teza
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ran Yaacoby
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Oren Raz
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
11
|
Megías A, Santos A. Kinetic Theory and Memory Effects of Homogeneous Inelastic Granular Gases under Nonlinear Drag. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1436. [PMID: 37420455 PMCID: PMC9601354 DOI: 10.3390/e24101436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 06/18/2023]
Abstract
We study a dilute granular gas immersed in a thermal bath made of smaller particles with masses not much smaller than the granular ones in this work. Granular particles are assumed to have inelastic and hard interactions, losing energy in collisions as accounted by a constant coefficient of normal restitution. The interaction with the thermal bath is modeled by a nonlinear drag force plus a white-noise stochastic force. The kinetic theory for this system is described by an Enskog-Fokker-Planck equation for the one-particle velocity distribution function. To get explicit results of the temperature aging and steady states, Maxwellian and first Sonine approximations are developed. The latter takes into account the coupling of the excess kurtosis with the temperature. Theoretical predictions are compared with direct simulation Monte Carlo and event-driven molecular dynamics simulations. While good results for the granular temperature are obtained from the Maxwellian approximation, a much better agreement, especially as inelasticity and drag nonlinearity increase, is found when using the first Sonine approximation. The latter approximation is, additionally, crucial to account for memory effects such as Mpemba and Kovacs-like ones.
Collapse
Affiliation(s)
- Alberto Megías
- Departamento de Física, Universidad de Extremadura, E-06006 Badajoz, Spain
| | - Andrés Santos
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006 Badajoz, Spain
| |
Collapse
|
12
|
Schwarzendahl FJ, Löwen H. Anomalous Cooling and Overcooling of Active Colloids. PHYSICAL REVIEW LETTERS 2022; 129:138002. [PMID: 36206411 DOI: 10.1103/physrevlett.129.138002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/14/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
The phenomenon that a system at a hot temperature cools faster than at a warm temperature, referred to as the Mpemba effect, has recently been realized for trapped colloids. Here, we investigate the cooling and heating process of a self-propelled active colloid using numerical simulations and theoretical calculations with a model that can be directly tested in experiments. Upon cooling, activity induces a Mpemba effect and the active particle transiently escapes an effective temperature description. At the end of the cooling process the notion of temperature is recovered and the system can exhibit even smaller temperatures than its final temperature, a surprising phenomenon which we refer to as activity-induced overcooling.
Collapse
Affiliation(s)
- Fabian Jan Schwarzendahl
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|