1
|
Yadav RS, Chakrabarti R. Demixing of an active-passive binary mixture through a two-dimensional elastic meshwork. SOFT MATTER 2025; 21:2242-2250. [PMID: 39996288 DOI: 10.1039/d4sm01443j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Separation of particles based on motility is a daunting task, especially when the particles are of the same size and the density is low. We propose and demonstrate how a dilute monodisperse mixture of active-passive particles can be separated by introducing an elastic meshwork. Our in silico method does not rely on any external stimuli, rather the mesh size and stiffness of the meshwork control the demixing. There is a threshold activity above which demixing starts and below this, particles exert pressure on the meshwork that relaxes upon permeation. Our findings are in principle experimentally testable and open up new avenues for active-passive separation, where clustering of particles is not feasible.
Collapse
Affiliation(s)
- Ramanand Singh Yadav
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
2
|
Mondal K, Bera P, Ghosh P. Diverse morphology and motility induced emergent order in bacterial collectives. J Chem Phys 2024; 161:094908. [PMID: 39230379 DOI: 10.1063/5.0220700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
Microbial communities exhibit complex behaviors driven by species interactions and individual characteristics. In this study, we delve into the dynamics of a mixed bacterial population comprising two distinct species with different morphology and motility aspects. Employing agent-based modeling and computer simulations, we analyze the impacts of size ratios and packing fractions on dispersal patterns, aggregate formation, clustering, and spatial ordering. Notably, we find that motility and anisotropy of elongated bacteria significantly influence the distribution and spatial organization of nonmotile spherical species. Passive spherical cells display a superdiffusive behavior, particularly at larger size ratios in the ballistic regime. As the size ratio increases, clustering of passive cells is observed, accompanied by enhanced alignment and closer packing of active cells in the presence of higher passive cell area fractions. In addition, we identify the pivotal role of passive cell area fraction in influencing the response of active cells toward nematicity, with its dependence on size ratio. These findings shed light on the significance of morphology and motility in shaping the collective behavior of microbial communities, providing valuable insights into complex microbial behaviors with implications for ecology, biotechnology, and bioengineering.
Collapse
Affiliation(s)
- Kaustav Mondal
- Center for High-Performance Computing, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Palash Bera
- Tata Institute of Fundamental Research Hyderabad, Hyderabad, Telangana 500046, India
| | - Pushpita Ghosh
- Center for High-Performance Computing, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
3
|
Bhattacharyya S, Yeomans JM. Phase ordering in binary mixtures of active nematic fluids. Phys Rev E 2024; 110:024607. [PMID: 39294938 DOI: 10.1103/physreve.110.024607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/26/2024] [Indexed: 09/21/2024]
Abstract
We use a continuum, two-fluid approach to study a mixture of two active nematic fluids. Even in the absence of thermodynamically driven ordering, for mixtures of different activities we observe turbulent microphase separation, where domains form and disintegrate chaotically in an active turbulent background. This is a weak effect if there is no elastic nematic alignment between the two fluid components, but is greatly enhanced in the presence of an elastic alignment or substrate friction. We interpret the results in terms of relative flows between the two species which result from active anchoring at concentration gradients. Our results may have relevance in interpreting epithelial cell sorting and the dynamics of multispecies bacterial colonies.
Collapse
|
4
|
Gautam D, Meena H, Matheshwaran S, Chandran S. Harnessing density to control the duration of intermittent Lévy walks in bacterial turbulence. Phys Rev E 2024; 110:L012601. [PMID: 39160909 DOI: 10.1103/physreve.110.l012601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/29/2024] [Indexed: 08/21/2024]
Abstract
Dense bacterial suspensions display collective motion exhibiting coherent flow structures reminiscent of turbulent flows. However, in contrast to inertial turbulence, the microscopic dynamics underlying bacterial turbulence is only beginning to be understood. Here, we report experiments revealing correlations between microscopic dynamics and the emergence of collective motion in bacterial suspensions. Our results demonstrate the existence of three microscopic dynamical regimes: initial ballistic dynamics followed by an intermittent Lévy walk before the intriguing decay to random Gaussian fluctuations. Our experiments capture that the fluid correlation time earmarks the transition from Lévy to Gaussian fluctuations demonstrating the microscopic reason underlying the observation. By harnessing the flow activity via bacterial concentration, we reveal systematic control over the flow correlation timescales, which, in turn, allows controlling the duration of the Lévy walk.
Collapse
|
5
|
Kushwaha P, Maity S, Menon A, Chelakkot R, Chikkadi V. Percolation of nonequilibrium assemblies of colloidal particles in active chiral liquids. SOFT MATTER 2024; 20:4699-4706. [PMID: 38832669 DOI: 10.1039/d4sm00305e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The growing interest in the non-equilibrium assembly of colloidal particles in active liquids is driven by the motivation to create novel structures endowed with tunable properties unattainable within the confines of equilibrium systems. Here, we present an experimental investigation of the structural features of colloidal assemblies in active liquids of chiral E. coli. The colloidal particles form dynamic clusters due to the effective interaction mediated by active media. The activity and chirality of the swimmers strongly influence the dynamics and local ordering of colloidal particles, resulting in clusters with persistent rotation, whose structure differs significantly from those in equilibrium systems with attractive interactions, such as colloid-polymer mixtures. Our colloid-bacteria mixture displays several hallmark features of a percolation transition at a critical density, where the clusters span the system size. A closer examination of the critical exponents associated with cluster size distribution, the average cluster size, and the correlation length in the vicinity of the critical density shows deviations from the prediction of the standard continuum percolation model. Therefore, our experiments reveal a richer phase behavior of colloidal assemblies in active liquids.
Collapse
Affiliation(s)
- Pragya Kushwaha
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India.
| | - Sayan Maity
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India.
| | - Anjaly Menon
- Department of Applied Physics, Aalto University School of Science, Konemiehentie 1, 02150 Espoo, Finland
| | - Raghunath Chelakkot
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Vijayakumar Chikkadi
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India.
| |
Collapse
|
6
|
Batton CH, Rotskoff GM. Microscopic origin of tunable assembly forces in chiral active environments. SOFT MATTER 2024; 20:4111-4126. [PMID: 38726733 DOI: 10.1039/d4sm00247d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Across a variety of spatial scales, from nanoscale biological systems to micron-scale colloidal systems, equilibrium self-assembly is entirely dictated by-and therefore limited by-the thermodynamic properties of the constituent materials. In contrast, nonequilibrium materials, such as self-propelled active matter, expand the possibilities for driving the assemblies that are inaccessible in equilibrium conditions. Recently, a number of works have suggested that active matter drives or accelerates self-organization, but the emergent interactions that arise between solutes immersed in actively driven environments are complex and poorly understood. Here, we analyze and resolve two crucial questions concerning actively driven self-assembly: (i) how, mechanistically, do active environments drive self-assembly of passive solutes? (ii) Under which conditions is this assembly robust? We employ the framework of odd hydrodynamics to theoretically explain numerical and experimental observations that chiral active matter, i.e., particles driven with a directional torque, produces robust and long-ranged assembly forces. Together, these developments constitute an important step towards a comprehensive theoretical framework for controlling self-assembly in nonequilibrium environments.
Collapse
Affiliation(s)
- Clay H Batton
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.
| | - Grant M Rotskoff
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
7
|
Bera P, Wasim A, Ghosh P. Interplay of cell motility and self-secreted extracellular polymeric substance induced depletion effects on spatial patterning in a growing microbial colony. SOFT MATTER 2023; 19:8136-8149. [PMID: 37847026 DOI: 10.1039/d3sm01144e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Reproducing bacteria self-organize to develop patterned biofilms in various conditions. Various factors contribute to the shaping of a multicellular bacterial organization. Here we investigate how motility force and self-secreted extracellular polymeric substances (EPS) influence bacterial cell aggregation, leading to phase-separated colonies using a particle-based/individual-based model. Our findings highlight the critical role of the interplay between motility force and depletion effects in regulating phase separation within a growing colony under far-from-equilibrium conditions. We observe that increased motility force hinders depletion-induced cell aggregation and phase segregation, necessitating a higher depletion effect for highly motile bacteria to undergo phase separation within a growing biofilm. We present a phase diagram illustrating the systematic variation of motility force and repulsive mechanical force, shedding light on the combined contributions of these two factors: self-propulsive motion and aggregation due to the depletion effect, resulting in the presence of small to large bacterial aggregates. Furthermore, our study reveals the dynamic nature of clustering, marked by changes in cluster size over time. Additionally, our findings suggest that differential dispersion among the components can lead to the localization of EPS at the periphery of a growing colony. Our study enhances the understanding of the collective dynamics of motile bacterial cells within a growing colony, particularly in the presence of a self-secreted polymer-driven depletion effect.
Collapse
Affiliation(s)
- Palash Bera
- Tata Institute of Fundamental Research Hyderabad, Telangana 500046, India
| | - Abdul Wasim
- Tata Institute of Fundamental Research Hyderabad, Telangana 500046, India
| | - Pushpita Ghosh
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
8
|
Ning L, Lou X, Ma Q, Yang Y, Luo N, Chen K, Meng F, Zhou X, Yang M, Peng Y. Hydrodynamics-Induced Long-Range Attraction between Plates in Bacterial Suspensions. PHYSICAL REVIEW LETTERS 2023; 131:158301. [PMID: 37897752 DOI: 10.1103/physrevlett.131.158301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/23/2023] [Indexed: 10/30/2023]
Abstract
We perform optical-tweezers experiments and mesoscale fluid simulations to study the effective interactions between two parallel plates immersed in bacterial suspensions. The plates are found to experience a long-range attraction, which increases linearly with bacterial density and decreases with plate separation. The higher bacterial density and orientation order between plates observed in the experiments imply that the long-range effective attraction mainly arises from the bacterial flow field, instead of the direct bacterium-plate collisions, which is confirmed by the simulations. Furthermore, the hydrodynamic contribution is inversely proportional to the squared interplate separation in the far field. Our findings highlight the importance of hydrodynamics on the effective forces between passive objects in active baths, providing new possibilities to control activity-directed assembly.
Collapse
Affiliation(s)
- Luhui Ning
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Xin Lou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Qili Ma
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yaochen Yang
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory for Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Nan Luo
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Fanlong Meng
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- CAS Key Laboratory for Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xin Zhou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yi Peng
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Rojas-Vega M, de Castro P, Soto R. Mixtures of self-propelled particles interacting with asymmetric obstacles. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:95. [PMID: 37819444 DOI: 10.1140/epje/s10189-023-00354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023]
Abstract
In the presence of an obstacle, active particles condensate into a surface "wetting" layer due to persistent motion. If the obstacle is asymmetric, a rectification current arises in addition to wetting. Asymmetric geometries are therefore commonly used to concentrate microorganisms like bacteria and sperms. However, most studies neglect the fact that biological active matter is diverse, composed of individuals with distinct self-propulsions. Using simulations, we study a mixture of "fast" and "slow" active Brownian disks in two dimensions interacting with large half-disk obstacles. With this prototypical obstacle geometry, we analyze how the stationary collective behavior depends on the degree of self-propulsion "diversity," defined as proportional to the difference between the self-propulsion speeds, while keeping the average self-propulsion speed fixed. A wetting layer rich in fast particles arises. The rectification current is amplified by speed diversity due to a superlinear dependence of rectification on self-propulsion speed, which arises from cooperative effects. Thus, the total rectification current cannot be obtained from an effective one-component active fluid with the same average self-propulsion speed, highlighting the importance of considering diversity in active matter.
Collapse
Affiliation(s)
- Mauricio Rojas-Vega
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Pablo de Castro
- ICTP South American Institute for Fundamental Research and Instituto de Física Teórica, Universidade Estadual Paulista - UNESP, São Paulo, 01140-070, Brazil.
| | - Rodrigo Soto
- Departamento de Física, FCFM, Universidad de Chile, Avenida Blanco Encalada 2008, Santiago, Chile
| |
Collapse
|
10
|
Su J, Wu Q, Xing X, Li D, Ou Y, He K, Lin H, Qiu Y, Rausch-Fan X, Chen J. Effect of sulfonation time on physicochemical, osteogenic, antibacterial properties and biocompatibility of carbon fiber reinforced polyether ether ketone. J Mech Behav Biomed Mater 2023; 145:105979. [PMID: 37467553 DOI: 10.1016/j.jmbbm.2023.105979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
The carbon fiber reinforced polyetheretherketone (CFR-PEEK) has been increasingly used in orthopedics dentistry due to its excellent biocompatibility and mechanical properties. However, the biological inertness and poor antibacterial activity limit its clinical applications. This paper focused on the performances of CFR-PEEK with porous morphology that were exposed to different sulfonation periods (1, 3, 5, and 10 min, corresponding to CP-S1, CP-S3, CP-S5, and CP-S10, respectively). Residual sulfuric acid was removed by acetone rinsing, NaOH immersion, and hydrothermal treatment before in vitro and in vivo studies. The results showed some significant difference in the physicochemical properties, including energy dispersive X-ray spectroscopy (EDS) map of sulfur atoms, X-ray photoelectron spectroscopy (XPS) of valences of sulfur ions, Fourier transformation infrared spectroscopy (FTIR), hydrophilicity, hardness, and elastic modulus among CP-S3, CP-S5, and CP-S10. However, CP-S5 and CP-S10 were more effective in promoting the proliferation, adhesion, and osteogenic differentiation of seeded bone mesenchymal stem cells (BMSCs) and growth inhibition of S. aureus and P. gingivalis compared with other groups. Furthermore, the CP-S5 and CP-S10 samples achieved better cranial bone repair than the non-sulfonation group in a rat model. Therefore, it can be inferred that both 5 and 10 min are viable sulfonation durations for 30% CFR-PEEK. These findings provide a theoretical basis for developing CFR-PEEK for clinical applications.
Collapse
Affiliation(s)
- Jingjing Su
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350000, China
| | - Qingshi Wu
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Xiaojie Xing
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350000, China
| | - Dexiong Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350000, China
| | - Yanjing Ou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350000, China
| | - Kaixun He
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350000, China
| | - Hanyu Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350000, China
| | - Yubei Qiu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350000, China
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria.
| | - Jiang Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350000, China.
| |
Collapse
|
11
|
Kushwaha P, Semwal V, Maity S, Mishra S, Chikkadi V. Phase separation of passive particles in active liquids. Phys Rev E 2023; 108:034603. [PMID: 37849120 DOI: 10.1103/physreve.108.034603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/03/2023] [Indexed: 10/19/2023]
Abstract
The transport properties of colloidal particles in active liquids have been studied extensively. It has led to a deeper understanding of the interactions between passive and active particles. However, the phase behavior of colloidal particles in active media has received little attention. Here, we present a combined experimental and numerical investigation of passive colloids dispersed in suspensions of active particles. Our study reveals dynamic clustering of colloids in active media due to an interplay of activity and attractive effective potential between the colloids. The strength of the effective potential is set by the size ratio of passive particles to the active ones. As the relative size of the passive particles increases, the effective potential becomes stronger and the average size of the clusters grows. The simulations reveal a macroscopic phase separation at sufficiently large size ratios. We will discuss the effect of density fluctuations of active particles on the nature of effective interactions between passive ones.
Collapse
Affiliation(s)
- Pragya Kushwaha
- Indian Institute of Science Education and Research, Pune 411008, India
| | - Vivek Semwal
- Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sayan Maity
- Indian Institute of Science Education and Research, Pune 411008, India
| | - Shradha Mishra
- Indian Institute of Technology (BHU), Varanasi 221005, India
| | | |
Collapse
|
12
|
Bhattacharyya S, Yeomans JM. Phase Separation Driven by Active Flows. PHYSICAL REVIEW LETTERS 2023; 130:238201. [PMID: 37354397 DOI: 10.1103/physrevlett.130.238201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/09/2023] [Indexed: 06/26/2023]
Abstract
We extend the continuum theories of active nematohydrodynamics to model a two-fluid mixture with separate velocity fields for each fluid component, coupled through a viscous drag. The model is used to study an active nematic fluid mixed with an isotropic fluid. We find microphase separation, and argue that this results from an interplay between active anchoring and active flows driven by concentration gradients. The results may be relevant to cell sorting and the formation of lipid rafts in cell membranes.
Collapse
Affiliation(s)
- Saraswat Bhattacharyya
- Rudolf Peierls Centre For Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Julia M Yeomans
- Rudolf Peierls Centre For Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
13
|
Bouvard J, Moisy F, Auradou H. Ostwald-like ripening in the two-dimensional clustering of passive particles induced by swimming bacteria. Phys Rev E 2023; 107:044607. [PMID: 37198759 DOI: 10.1103/physreve.107.044607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/28/2023] [Indexed: 05/19/2023]
Abstract
Clustering passive particles by active agents is a promising route for fabrication of colloidal structures. Here, we report the dynamic clustering of micrometric beads in a suspension of motile bacteria. We characterize the coarsening dynamics for various bead sizes, surface fractions, and bacterial concentrations. We show that the time scale τ for the onset of clustering is governed by the time of first encounter of diffusing beads. At large time (t≫τ), we observe a robust cluster growth as t^{1/3}, similar to the Ostwald ripening mechanism. From bead tracking measurements, we extract the short-range bacteria-induced attractive force at the origin of this clustering.
Collapse
Affiliation(s)
- J Bouvard
- Université Paris-Saclay, CNRS, FAST, 91405 Orsay, France
| | - F Moisy
- Université Paris-Saclay, CNRS, FAST, 91405 Orsay, France
| | - H Auradou
- Université Paris-Saclay, CNRS, FAST, 91405 Orsay, France
| |
Collapse
|