1
|
Gispen W, Bolhuis PG, Dijkstra M. Kinetic phase diagram for two-step nucleation in colloid-polymer mixtures. J Chem Phys 2025; 162:134901. [PMID: 40166999 DOI: 10.1063/5.0251560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Two-step crystallization via a metastable intermediate phase is often regarded as a non-classical process that lies beyond the framework of classical nucleation theory (CNT). In this work, we investigate two-step crystallization in colloid-polymer mixtures via an intermediate liquid phase. Using CNT-based seeding simulations, we construct a kinetic phase diagram that identifies regions of phase space where the critical nucleus is either liquid or crystalline. These predictions are validated using transition path sampling simulations at nine different relevant state points. When the critical nucleus is liquid, crystallization occurs stochastically during the growth phase, whereas for a crystalline critical nucleus, the crystallization process happens pre-critically at a fixed nucleus size. We conclude that CNT-based kinetic phase diagrams are a powerful tool for understanding and predicting "non-classical" crystal nucleation mechanisms.
Collapse
Affiliation(s)
- Willem Gispen
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Peter G Bolhuis
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
2
|
Möller J, Schottelius A, Caresana M, Boesenberg U, Kim C, Dallari F, Ezquerra TA, Fernández JM, Gelisio L, Glaesener A, Goy C, Hallmann J, Kalinin A, Kurta RP, Lapkin D, Lehmkühler F, Mambretti F, Scholz M, Shayduk R, Trinter F, Vartaniants IA, Zozulya A, Galli DE, Grübel G, Madsen A, Caupin F, Grisenti RE. Crystal Nucleation in Supercooled Atomic Liquids. PHYSICAL REVIEW LETTERS 2024; 132:206102. [PMID: 38829060 DOI: 10.1103/physrevlett.132.206102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/22/2024] [Accepted: 03/28/2024] [Indexed: 06/05/2024]
Abstract
The liquid-to-solid phase transition is a complex process that is difficult to investigate experimentally with sufficient spatial and temporal resolution. A key aspect of the transition is the formation of a critical seed of the crystalline phase in a supercooled liquid, that is, a liquid in a metastable state below the melting temperature. This stochastic process is commonly described within the framework of classical nucleation theory, but accurate tests of the theory in atomic and molecular liquids are challenging. Here, we employ femtosecond x-ray diffraction from microscopic liquid jets to study crystal nucleation in supercooled liquids of the rare gases argon and krypton. Our results provide stringent limits to the validity of classical nucleation theory in atomic liquids, and offer the long-sought possibility of testing nonclassical extensions of the theory.
Collapse
Affiliation(s)
- Johannes Möller
- European X-ray Free-Electron Laser Facility, 22869 Schenefeld, Germany
| | - Alexander Schottelius
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Michele Caresana
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Ulrike Boesenberg
- European X-ray Free-Electron Laser Facility, 22869 Schenefeld, Germany
| | - Chan Kim
- European X-ray Free-Electron Laser Facility, 22869 Schenefeld, Germany
| | | | - Tiberio A Ezquerra
- Macromolecular Physics Department, Instituto de Estructura de la Materia, IEM-CSIC, 28006 Madrid, Spain
| | - José M Fernández
- Laboratory of Molecular Fluid Dynamics, Instituto de Estructura de la Materia, IEM-CSIC, 28006 Madrid, Spain
| | - Luca Gelisio
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Andrea Glaesener
- Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, 20133 Milano, Italy
| | - Claudia Goy
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Jörg Hallmann
- European X-ray Free-Electron Laser Facility, 22869 Schenefeld, Germany
| | - Anton Kalinin
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Ruslan P Kurta
- European X-ray Free-Electron Laser Facility, 22869 Schenefeld, Germany
| | - Dmitry Lapkin
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | - Francesco Mambretti
- Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, 20133 Milano, Italy
| | - Markus Scholz
- European X-ray Free-Electron Laser Facility, 22869 Schenefeld, Germany
| | - Roman Shayduk
- European X-ray Free-Electron Laser Facility, 22869 Schenefeld, Germany
| | - Florian Trinter
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | | | - Alexey Zozulya
- European X-ray Free-Electron Laser Facility, 22869 Schenefeld, Germany
| | - Davide E Galli
- Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, 20133 Milano, Italy
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - Anders Madsen
- European X-ray Free-Electron Laser Facility, 22869 Schenefeld, Germany
| | - Frédéric Caupin
- Institut Lumière Matière, Université Claude Bernard Lyon 1, CNRS, Institut Universitaire de France, 69622 Villeurbanne, France
| | - Robert E Grisenti
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| |
Collapse
|
3
|
Bowles RK, Harrowell P. Crystal Growth Rates from Molecular Liquids: The Kinetics of Entropy Loss. J Phys Chem B 2023; 127:4126-4134. [PMID: 37126656 DOI: 10.1021/acs.jpcb.3c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
It has been established empirically that the rate of addition of molecules to the crystal during crystal growth from the melt is proportional to exp(-|ΔSfus|/R), where ΔSfus is the entropy of fusion. Here we show that this entropic slowdown arises directly from the separation of the entropy loss and energy loss processes associated with the freezing of the liquid. We present a theoretical treatment of the kinetics based on a model flat energy landscape and derive an explicit expression for the coupling magnitude in terms of the crystal-melt interfacial free energy. The implications of our work for nucleation kinetics are also discussed.
Collapse
Affiliation(s)
- Richard K Bowles
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7H 0H1 3
- Centre for Quantum Topology and its Applications (quanTA), University of Saskatchewan, Saskatchewan, Canada S7N 5E6 4
| | - Peter Harrowell
- School of Chemistry, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|