1
|
Schweers S, Schütz GM, Maass P. Correlations of density and current fluctuations in single-file motion of hard spheres and in driven lattice gas with nearest-neighbor interaction. J Chem Phys 2025; 162:164110. [PMID: 40293295 DOI: 10.1063/5.0266744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
We analyze correlations between density fluctuations and between current fluctuations in a one-dimensional driven lattice gas with repulsive nearest-neighbor interaction and in single-file Brownian motion of hard spheres dragged across a cosine potential with constant force. By extensive kinetic Monte Carlo and Brownian dynamics simulations, we show that density and current correlation functions in nonequilibrium steady states follow the scaling behavior of the Kardar-Parisi-Zhang (KPZ) universality class. In a coordinate frame comoving with the collective particle velocity, the current correlation function decays as ∼-t-4/3 with time t. Density fluctuations spread superdiffusively as ∼t2/3 at long times, and their spatio-temporal behavior is well described by the KPZ scaling function. In the absence of the cosine potential, the correlation functions in the system of dragged hard spheres show scaling behavior according to the Edwards-Wilkinson universality class. In the coordinate frame comoving with the mean particle velocity, they behave as in equilibrium, with current correlations decaying as ∼-t-3/2 and density fluctuations spreading diffusively as ∼t1/2.
Collapse
Affiliation(s)
- Sören Schweers
- Universität Osnabrück, Institute for Physics, Barbarastraße 7, D-49076, Osnabrück, Germany
| | | | - Philipp Maass
- Universität Osnabrück, Institute for Physics, Barbarastraße 7, D-49076, Osnabrück, Germany
| |
Collapse
|
2
|
Mishra S, Ryabov A, Maass P. Phase Locking and Fractional Shapiro Steps in Collective Dynamics of Microparticles. PHYSICAL REVIEW LETTERS 2025; 134:107102. [PMID: 40153661 DOI: 10.1103/physrevlett.134.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/18/2025] [Indexed: 03/30/2025]
Abstract
In driven nonlinear systems, phase locking is an intriguing effect leading to robust stationary states that are stable over extended ranges of control parameters. Recent experiments allow for exploring microscopic mechanisms underlying such phenomena in collective dynamics of micro- and nanoparticles. Here, we show that phase-locked dynamics of hardcore-interacting microparticles in a densely populated periodic potential under time-periodic driving arises from running solitary cluster waves. We explain how values of phase-locked currents are related to soliton velocities and why collective particle dynamics synchronize with the driving for certain particle diameters only. Our analysis is based on an effective potential for the solitary wave propagation and a unit displacement law, which states that the total average shift of all particle positions per soliton period equals one wavelength of the periodic potential.
Collapse
Affiliation(s)
- Seemant Mishra
- Universität Osnabrück, Fachbereich Mathematik/Informatik/Physik, Barbarastraße 7, D-49076 Osnabrück, Germany
| | - Artem Ryabov
- Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, CZ-18000 Praha 8, Czech Republic
| | - Philipp Maass
- Universität Osnabrück, Fachbereich Mathematik/Informatik/Physik, Barbarastraße 7, D-49076 Osnabrück, Germany
| |
Collapse
|
3
|
ElSawy KM. Utility of Brownian dynamics simulations in chemistry and biology: A comprehensive review. Biochim Biophys Acta Gen Subj 2025; 1869:130740. [PMID: 39694298 DOI: 10.1016/j.bbagen.2024.130740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Brownian dynamics (BD) simulations, a powerful computer simulation tool that has gained significant attraction in investigating the intricate dynamics of chemical and biological systems. By meticulously modeling the diffusive motion of molecules and their intricate interactions, BD simulations offer invaluable insights into a diverse array of phenomena, including reaction kinetics, molecular transport, and biomolecular association. This comprehensive review delves into the utility of BD simulations within the realms of chemistry and biology. We meticulously explore the theoretical underpinnings of the technique, critically analyze its strengths and limitations, and showcase its diverse applications across various scientific domains. By providing a comprehensive analysis of the existing literature, we aim to illuminate the potential of BD simulations to significantly advance our understanding of complex chemical and biological systems, ultimately contributing to the development of innovative therapeutic solutions serving a broad range of biomedical applications.
Collapse
Affiliation(s)
- Karim M ElSawy
- Department of Chemistry, College of Science, Qassim University, Mulaidah 52571, Saudi Arabia.
| |
Collapse
|
4
|
Cereceda-López E, Antonov AP, Ryabov A, Maass P, Tierno P. Overcrowding induces fast colloidal solitons in a slowly rotating potential landscape. Nat Commun 2023; 14:6448. [PMID: 37833258 PMCID: PMC10575966 DOI: 10.1038/s41467-023-41989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Collective particle transport across periodic energy landscapes is ubiquitously present in many condensed matter systems spanning from vortices in high-temperature superconductors, frictional atomic sliding, driven skyrmions to biological and active matter. Here we report the emergence of fast solitons propagating against a rotating optical landscape. These experimentally observed solitons are stable cluster waves that originate from a coordinated particle exchange process which occurs when the number of trapped microparticles exceeds the number of potential wells. The size and speed of individual solitons rapidly increase with the particle diameter as predicted by theory and confirmed by numerical simulations. We show that when several solitons coexist, an effective repulsive interaction can stabilize their propagation along the periodic potential. Our experiments demonstrate a generic mechanism for cluster-mediated transport with potential applications to condensed matter systems on different length scales.
Collapse
Affiliation(s)
- Eric Cereceda-López
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028, Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (IN2UB), 08028, Barcelona, Spain
| | - Alexander P Antonov
- Universität Osnabrück, Fachbereich Physik, Barbarastraße 7, D-49076, Osnabrück, Germany
| | - Artem Ryabov
- Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, CZ-18000, Praha 8, Czech Republic.
| | - Philipp Maass
- Universität Osnabrück, Fachbereich Physik, Barbarastraße 7, D-49076, Osnabrück, Germany.
| | - Pietro Tierno
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028, Barcelona, Spain.
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (IN2UB), 08028, Barcelona, Spain.
- University of Barcelona Institute of Complex Systems (UBICS), 08028, Barcelona, Spain.
| |
Collapse
|
5
|
Voráč D, Maass P, Ryabov A. Single-file transport of binary hard-sphere mixtures through periodic potentials. J Chem Phys 2023; 159:114114. [PMID: 37724725 DOI: 10.1063/5.0164401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
Single-file transport occurs in various scientific fields, including diffusion through nanopores, nanofluidic devices, and cellular processes. We here investigate the impact of polydispersity on particle currents for single-file Brownian motion of hard spheres when they are driven through periodic potentials by a constant drag force. Through theoretical analysis and extensive Brownian dynamics simulations, we unveil the behavior of particle currents for random binary mixtures. The particle currents show a recurring pattern in dependence of the hard-sphere diameters and mixing ratio. We explain this recurrent behavior by showing that a basic unit cell exists in the space of the two hard-sphere diameters. Once the behavior of an observable inside the unit cell is determined, it can be inferred for any diameter. The overall variation of particle currents with the mixing ratio and hard-sphere diameters is reflected by their variation in the limit where the system is fully covered by hard spheres. In this limit, the currents can be predicted analytically. Our analysis explains the occurrence of pronounced maxima and minima of the currents by changes in the effective potential barrier for the center-of-mass motion.
Collapse
Affiliation(s)
- David Voráč
- Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, CZ-18000 Praha 8, Czech Republic
| | - Philipp Maass
- Universität Osnabrück, Faculty of Mathematics, Informatics and Physics, Institute of Physics, Barbarastraße 7, D-49076 Osnabrück, Germany
| | - Artem Ryabov
- Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, CZ-18000 Praha 8, Czech Republic
| |
Collapse
|
6
|
Schweers S, Antonov AP, Ryabov A, Maass P. Scaling laws for single-file diffusion of adhesive particles. Phys Rev E 2023; 107:L042102. [PMID: 37198860 DOI: 10.1103/physreve.107.l042102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/29/2023] [Indexed: 05/19/2023]
Abstract
Single-file diffusion refers to the Brownian motion in narrow channels where particles cannot pass each other. In such processes, the diffusion of a tagged particle is typically normal at short times and becomes subdiffusive at long times. For hard-sphere interparticle interaction, the time-dependent mean squared displacement of a tracer is well understood. Here we develop a scaling theory for adhesive particles. It provides a full description of the time-dependent diffusive behavior with a scaling function that depends on an effective strength of adhesive interaction. Particle clustering induced by the adhesive interaction slows down the diffusion at short times, while it enhances subdiffusion at long times. The enhancement effect can be quantified in measurements irrespective of how tagged particles are injected into the system. Combined effects of pore structure and particle adhesiveness should speed up translocation of molecules through narrow pores.
Collapse
Affiliation(s)
- Sören Schweers
- Universität Osnabrück, Fachbereich Physik, Barbarastraße 7, D-49076 Osnabrück, Germany
| | - Alexander P Antonov
- Universität Osnabrück, Fachbereich Physik, Barbarastraße 7, D-49076 Osnabrück, Germany
| | - Artem Ryabov
- Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, CZ-18000 Praha 8, Czech Republic
| | - Philipp Maass
- Universität Osnabrück, Fachbereich Physik, Barbarastraße 7, D-49076 Osnabrück, Germany
| |
Collapse
|
7
|
Te Vrugt M, Wittkowski R. Perspective: New directions in dynamical density functional theory. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:041501. [PMID: 35917827 DOI: 10.1088/1361-648x/ac8633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Classical dynamical density functional theory (DDFT) has become one of the central modeling approaches in nonequilibrium soft matter physics. Recent years have seen the emergence of novel and interesting fields of application for DDFT. In particular, there has been a remarkable growth in the amount of work related to chemistry. Moreover, DDFT has stimulated research on other theories such as phase field crystal models and power functional theory. In this perspective, we summarize the latest developments in the field of DDFT and discuss a variety of possible directions for future research.
Collapse
Affiliation(s)
- Michael Te Vrugt
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|