Pei JH, Maes C. Induced friction on a probe moving in a nonequilibrium medium.
Phys Rev E 2025;
111:L032101. [PMID:
40247552 DOI:
10.1103/physreve.111.l032101]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/11/2025] [Indexed: 04/19/2025]
Abstract
Using a powerful combination of projection-operator method and path-space response theory, we derive the fluctuation dynamics of a slow inertial probe coupled to a steady nonequilibrium medium under the assumption of time-scale separation. The nonequilibrium is realized by external nongradient driving on the medium particles or by their (athermal) active self-propulsion. The resulting friction on the probe is an explicit time correlation for medium observables and is decomposed into two terms: one entropic, proportional to the noise variance as in the Einstein relation for equilibrium media, and a frenetic term that can take both signs. As an illustration, we give the exact expressions for the linear friction coefficient and noise amplitude of a probe in a rotating run-and-tumble medium. We find a transition to absolute negative probe friction as the nonequilibrium medium exhibits sufficient and persistent rotational current. There, the run-away of the probe to high speeds realizes a nonequilibrium-induced acceleration. Simulations show that its speed finally saturates, yielding a symmetric stationary probe-momentum distribution with two peaks.
Collapse