1
|
Wang WY, Thornton SJ, Chakraborty B, Barth AR, Singh N, Omonira J, Michel JA, Das M, Sethna JP, Cohen I. Rigidity transitions in anisotropic networks: a crossover scaling analysis. SOFT MATTER 2025; 21:3278-3289. [PMID: 40176555 DOI: 10.1039/d4sm01191k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
We study how the rigidity transition in a triangular lattice changes as a function of anisotropy by preferentially filling bonds on the lattice in one direction. We discover that the onset of rigidity in anisotropic spring networks on a regular triangular lattice arises in at least two steps, reminiscent of the two-step melting transition in two dimensional crystals. In particular, our simulations demonstrate that the percolation of stress-supporting bonds happens at different critical volume fractions along different directions. By examining each independent component of the elasticity tensor, we determine universal exponents and develop universal scaling functions to analyze isotropic rigidity percolation as a multicritical point. Our crossover scaling approach is applicable to anisotropic biological materials (e.g. cellular cytoskeletons, extracellular networks of tissues like tendons), and extensions to this analysis are important for the strain stiffening of these materials.
Collapse
Affiliation(s)
- William Y Wang
- Department of Physics, Cornell University, Ithaca, New York 14853, USA.
| | | | - Bulbul Chakraborty
- Department of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Anna R Barth
- Department of Physics, Cornell University, Ithaca, New York 14853, USA.
| | - Navneet Singh
- Department of Physics, Cornell University, Ithaca, New York 14853, USA.
| | - Japheth Omonira
- Department of Physics, Cornell University, Ithaca, New York 14853, USA.
| | - Jonathan A Michel
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Moumita Das
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - James P Sethna
- Department of Physics, Cornell University, Ithaca, New York 14853, USA.
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, New York 14853, USA.
- Department of Design Technology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
2
|
Monfared S, Ravichandran G, Andrade JE, Doostmohammadi A. Short-range correlation of stress chains near solid-to-liquid transition in active monolayers. J R Soc Interface 2024; 21:20240022. [PMID: 38715321 PMCID: PMC11077009 DOI: 10.1098/rsif.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 05/12/2024] Open
Abstract
Using a three-dimensional model of cell monolayers, we study the spatial organization of active stress chains as the monolayer transitions from a solid to a liquid state. The critical exponents that characterize this transition map the isotropic stress percolation onto the two-dimensional random percolation universality class, suggesting short-range stress correlations near this transition. This mapping is achieved via two distinct, independent pathways: (i) cell-cell adhesion and (ii) active traction forces. We unify our findings by linking the nature of this transition to high-stress fluctuations, distinctly linked to each pathway. The results elevate the importance of the transmission of mechanical information in dense active matter and provide a new context for understanding the non-equilibrium statistical physics of phase transition in active systems.
Collapse
Affiliation(s)
- Siavash Monfared
- Niels Bohr Institute, University of Copenhagen, Kobenhavn, 2100, Denmark
| | - Guruswami Ravichandran
- Division of Engineering and Applied Science, California Institute of Technology, , CA, 91125, USA
| | - José E. Andrade
- Division of Engineering and Applied Science, California Institute of Technology, , CA, 91125, USA
| | | |
Collapse
|
3
|
Lerner E. Effects of coordination and stiffness scale separation in disordered elastic networks. Phys Rev E 2024; 109:054904. [PMID: 38907389 DOI: 10.1103/physreve.109.054904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/26/2024] [Indexed: 06/24/2024]
Abstract
Many fibrous materials are modeled as elastic networks featuring a substantial separation between the stiffness scales that characterize different microscopic deformation modes of the network's constituents. This scale separation has been shown to give rise to emergent complexity in these systems' linear and nonlinear mechanical response. Here we study numerically a simple model featuring said stiffness scale separation in two-dimensions and show that its mechanical response is governed by the competition between the characteristic stiffness of collective nonphononic soft modes of the stiff subsystem, and the characteristic stiffness of the soft interactions. We present and rationalize the behavior of the shear modulus of our complex networks across the unjamming transition at which the stiff subsystem alone loses its macroscopic mechanical rigidity. We further establish a relation in the soft-interaction-dominated regime between the shear modulus, the characteristic frequency of nonphononic vibrational modes, and the mesoscopic correlation length that marks the crossover from a disorder-dominated response to local mechanical perturbations in the near field, to a linear, continuumlike response in the far field. The effects of spatial dimension on the observed scaling behavior are discussed, in addition to the interplay between stiffness scales in strain-stiffened networks, which is relevant to understanding the nonlinear mechanics of non-Brownian fibrous biomatter.
Collapse
|
4
|
Colt J, Nelson L, Cargile S, Brzinski T, Franklin SV. Properties of packings and dispersions of superellipse sector particles. Phys Rev E 2024; 109:024901. [PMID: 38491643 DOI: 10.1103/physreve.109.024901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/18/2023] [Indexed: 03/18/2024]
Abstract
Superellipse sector particles (SeSPs) are segments of superelliptical curves that form a tunable set of hard-particle shapes for granular and colloidal systems. SeSPs allow for continuous parametrization of corner sharpness, aspect ratio, and particle curvature; rods, circles, rectangles, and staples are examples of shapes SeSPs can model. We compare three computational processes: pair-wise Monte Carlo simulations that explore particle-particle geometric constraints, Monte Carlo simulations that reveal how these geometric constraints play out over dispersions of many particles, and Molecular Dynamics simulations that form random loose and close packings. We investigate the dependence of critical random loose and close packing fractions on particle parameters, finding that both values increase with opening aperture and decrease with increasing corner sharpness. The identified packing fractions are compared with the mean-field prediction of the random contact model; we find deviations from the model's prediction due to correlations between particle orientations. The complex interaction of spatial proximity and orientational alignment is also explored with a generalized spatioorientational distribution area (SODA) plot, which shows how higher density packings are achieved through particles assuming a small number of preferred configurations that depend sensitively on particle shape and system preparation.
Collapse
Affiliation(s)
- John Colt
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623-5603, USA
| | - Lucas Nelson
- Department of Physics and Astronomy, Haverford College, Haverford, Pennsylvania 19041, USA
| | - Sykes Cargile
- Department of Physics and Astronomy, Haverford College, Haverford, Pennsylvania 19041, USA
| | - Ted Brzinski
- Department of Physics and Astronomy, Haverford College, Haverford, Pennsylvania 19041, USA
| | - Scott V Franklin
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623-5603, USA
| |
Collapse
|
5
|
Das R, Sinha S, Li X, Kirkpatrick TR, Thirumalai D. Free volume theory explains the unusual behavior of viscosity in a non-confluent tissue during morphogenesis. eLife 2024; 12:RP87966. [PMID: 38241331 PMCID: PMC10945604 DOI: 10.7554/elife.87966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024] Open
Abstract
A recent experiment on zebrafish blastoderm morphogenesis showed that the viscosity (η) of a non-confluent embryonic tissue grows sharply until a critical cell packing fraction (ϕS). The increase in η up to ϕS is similar to the behavior observed in several glass-forming materials, which suggests that the cell dynamics is sluggish or glass-like. Surprisingly, η is a constant above ϕS. To determine the mechanism of this unusual dependence of η on ϕ, we performed extensive simulations using an agent-based model of a dense non-confluent two-dimensional tissue. We show that polydispersity in the cell size, and the propensity of the cells to deform, results in the saturation of the available free area per cell beyond a critical packing fraction. Saturation in the free space not only explains the viscosity plateau above ϕS but also provides a relationship between equilibrium geometrical packing to the dramatic increase in the relaxation dynamics.
Collapse
Affiliation(s)
- Rajsekhar Das
- Department of Chemistry, University of Texas at AustinAustinUnited States
| | - Sumit Sinha
- Department of Physics, University of Texas at AustinAustinUnited States
| | - Xin Li
- Department of Chemistry, University of Texas at AustinAustinUnited States
| | - TR Kirkpatrick
- Institute for Physical Science and Technology, University of MarylandCollege ParkUnited States
| | - D Thirumalai
- Department of Chemistry, University of Texas at AustinAustinUnited States
- Department of Physics, University of Texas at AustinAustinUnited States
| |
Collapse
|
6
|
Stephenson W, Sudhakar V, McInerney J, Czajkowski M, Rocklin DZ. Rigidity percolation in a random tensegrity via analytic graph theory. Proc Natl Acad Sci U S A 2023; 120:e2302536120. [PMID: 37988473 PMCID: PMC10691348 DOI: 10.1073/pnas.2302536120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/15/2023] [Indexed: 11/23/2023] Open
Abstract
Functional structures from across the engineered and biological world combine rigid elements such as bones and columns with flexible ones such as cables, fibers, and membranes. These structures are known loosely as tensegrities, since these cable-like elements have the highly nonlinear property of supporting only extensile tension. Marginally rigid systems are of particular interest because the number of structural constraints permits both flexible deformation and the support of external loads. We present a model system in which tensegrity elements are added at random to a regular backbone. This system can be solved analytically via a directed graph theory, revealing a mechanical critical point generalizing that of Maxwell. We show that even the addition of a few cable-like elements fundamentally modifies the nature of this transition point, as well as the later transition to a fully rigid structure. Moreover, the tensegrity network displays a collective avalanche behavior, in which the addition of a single cable leads to the elimination of multiple floppy modes, a phenomenon that becomes dominant at the transition point. These phenomena have implications for systems with nonlinear mechanical constraints, from biopolymer networks to soft robots to jammed packings to origami sheets.
Collapse
Affiliation(s)
- William Stephenson
- School of Physics, Georgia Institute of Technology, Atlanta, GA30332
- Department of Physics, University of Michigan, Ann Arbor, MI48109
| | - Vishal Sudhakar
- School of Physics, Georgia Institute of Technology, Atlanta, GA30332
| | - James McInerney
- Department of Physics, University of Michigan, Ann Arbor, MI48109
| | | | - D. Zeb Rocklin
- School of Physics, Georgia Institute of Technology, Atlanta, GA30332
| |
Collapse
|
7
|
Singh SK, Bu W, Sun P, Paige MF. Mixing in Langmuir Monolayers: Perfluorotetradecanoic Acid and a Gemini Surfactant without a Linker. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16503-16512. [PMID: 37931181 DOI: 10.1021/acs.langmuir.3c02452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A recently reported anionic gemini surfactant, a member of the so-called "gemini without a linker" family, has recently been reported to form closely packed crystalline monolayers at the air-water interface. In this work, the impact on monolayer properties of the compound, C18-0-C18, that result from its mixing with a benchmark perfluorinated surfactant, perfluorotetradecanoic acid (PF), is explored. The films exhibit nonideal mixing, as determined by surface pressure-area (π-A) isotherms and surface potential measurements, and phase-separation between the two components was observed by the direct visualization of the monolayers, and grazing-incident X-ray diffraction at the air-water interface. The pure and mixed films follow similar trends in the order of C18-0-C18 < PF < χPF = 0.50 mixed films for both their extent of hysteresis and their stability at the air-water interface. Further, crystallographic data for the mixed film emerge as a simple combination of distinct diffraction patterns characteristic of both the individual components, consistent with the other findings reported here and thus clarify the intermolecular behavior of the binary mixture at the surface.
Collapse
Affiliation(s)
- Srikant Kumar Singh
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Wei Bu
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Pan Sun
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew F Paige
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
8
|
Babu V, Vinutha HA, Bi D, Sastry S. Discontinuous rigidity transition associated with shear jamming in granular simulations. SOFT MATTER 2023. [PMID: 37830248 DOI: 10.1039/d3sm00725a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
We investigate the rigidity transition associated with shear jamming in frictionless, as well as frictional, disk packings in the quasi-static regime and at low shear rates. For frictionless disks, the transition under quasi-static shear is discontinuous, with an instantaneous emergence of a system spanning rigid clusters at the jamming transition. For frictional systems, the transition appears continuous for finite shear rates, but becomes sharper for lower shear rates. In the quasi-static limit, it is discontinuous as in the frictionless case. Thus, our results show that the rigidity transition associated with shear jamming is discontinuous, as demonstrated in the past for isotropic jamming of frictionless particles, and therefore a unifying feature of the jamming transition in general.
Collapse
Affiliation(s)
- Varghese Babu
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Rachenahalli Lake Road, Bengaluru 560064, India.
| | - H A Vinutha
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC, USA
| | - Dapeng Bi
- Department of Physics, Northeastern University, MA 02115, USA
| | - Srikanth Sastry
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Rachenahalli Lake Road, Bengaluru 560064, India.
| |
Collapse
|
9
|
Qiao Y, Liu Z, Ma X, Keim NC, Cheng X. Heterogeneous Dynamics of Sheared Particle-Laden Fluid Interfaces with Janus Particle Doping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12032-12040. [PMID: 37590891 DOI: 10.1021/acs.langmuir.3c01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The formation of particle clusters can substantially modify the dynamics and mechanical properties of suspensions in both two and three dimensions. While it has been well established that large network-spanning clusters increase the rigidity of particle systems, it is still unclear how the presence of localized nonpercolating clusters affects the dynamics and mechanical properties of particle suspensions. Here, we introduce self-assembled localized particle clusters at a fluid-fluid interface by mixing a fraction of Janus particles in a monolayer of homogeneous colloids. Each Janus particle binds to a few nearby homogeneous colloids, resulting in numerous small clusters uniformly distributed across the interface. Using a custom magnetic rod interfacial stress rheometer, we apply linear oscillatory shear to the particle-laden fluid interface. By analyzing the local affine deformation of particles from optical microscopy, we show that particles in localized clusters experience substantially lower shear-induced stretching than their neighbors outside clusters. We hypothesize that such heterogeneous dynamics induced by particle clusters increase the effective surface coverage of particles, which in turn enhances the shear moduli of the interface, as confirmed by direct interfacial rheological measurements. Our study illustrates the microscopic dynamics of small clusters in a shear flow and reveals their profound effects on the macroscopic rheology of particle-laden fluid interfaces. Our findings open an avenue for designing interfacial materials with improved mechanical properties via the control of formation of localized particle clusters.
Collapse
Affiliation(s)
- Yiming Qiao
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zhengyang Liu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xiaolei Ma
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nathan C Keim
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiang Cheng
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Javerzat N, Bouzid M. Evidences of Conformal Invariance in 2D Rigidity Percolation. PHYSICAL REVIEW LETTERS 2023; 130:268201. [PMID: 37450798 DOI: 10.1103/physrevlett.130.268201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/04/2023] [Accepted: 05/10/2023] [Indexed: 07/18/2023]
Abstract
The rigidity transition occurs when, as the density of microscopic components is increased, a disordered medium becomes able to transmit and ensure macroscopic mechanical stability, owing to the appearance of a space-spanning rigid connected component, or cluster. As a second-order phase transition it exhibits a scale invariant critical point, at which the rigid clusters are random fractals. We show, using numerical analysis, that these clusters are also conformally invariant, and we use conformal field theory to predict the form of universal finite-size effects. Furthermore, although connectivity and rigidity percolation are usually thought to be of fundamentally different natures, we provide evidence of unexpected similarities between the statistical properties of their random clusters at criticality. Our work opens a new research avenue through the application of the powerful 2D conformal field theory tools to understand the critical behavior of a wide range of physical and biological materials exhibiting such a mechanical transition.
Collapse
Affiliation(s)
- Nina Javerzat
- SISSA and INFN Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy
| | - Mehdi Bouzid
- Université Grenoble Alpes, CNRS, Grenoble INP, 3SR, F-38000, Grenoble, France
| |
Collapse
|
11
|
Li M, Wang J, Deng Y. Explosive Percolation Obeys Standard Finite-Size Scaling in an Event-Based Ensemble. PHYSICAL REVIEW LETTERS 2023; 130:147101. [PMID: 37084426 DOI: 10.1103/physrevlett.130.147101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Explosive percolation in the Achlioptas process, which has attracted much research attention, is known to exhibit a rich variety of critical phenomena that are anomalous from the perspective of continuous phase transitions. Hereby, we show that, in an event-based ensemble, the critical behaviors in explosive percolation are rather clean and obey the standard finite-size scaling theory, except for the large fluctuation of pseudo-critical points. In the fluctuation window, multiple fractal structures emerge and the values can be derived from a crossover scaling theory. Further, their mixing effects account well for the previously observed anomalous phenomena. Making use of the clean scaling in the event-based ensemble, we determine with a high precision the critical points and exponents for a number of bond-insertion rules and clarify ambiguities about their universalities. Our findings hold true for any spatial dimensions.
Collapse
Affiliation(s)
- Ming Li
- School of Physics, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Junfeng Wang
- School of Physics, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Youjin Deng
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- MinJiang Collaborative Center for Theoretical Physics, College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| |
Collapse
|
12
|
Choi GPT, Liu L, Mahadevan L. Explosive rigidity percolation in kirigami. Proc Math Phys Eng Sci 2023. [DOI: 10.1098/rspa.2022.0798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Controlling the connectivity and rigidity of kirigami, i.e. the process of cutting paper to deploy it into an articulated system, is critical in the manifestations of kirigami in art, science and technology, as it provides the resulting metamaterial with a range of mechanical and geometric properties. Here, we combine deterministic and stochastic approaches for the control of rigidity in kirigami using the power of
k
choices, an approach borrowed from the statistical mechanics of explosive percolation transitions. We show that several methods for rigidifying a kirigami system by incrementally changing either the connectivity or the rigidity of individual components allow us to control the nature of the explosive transition by a choice of selection rules. Our results suggest simple lessons for the design of mechanical metamaterials.
Collapse
|
13
|
Treado JD, Roddy AB, Théroux-Rancourt G, Zhang L, Ambrose C, Brodersen CR, Shattuck MD, O’Hern CS. Localized growth and remodelling drives spongy mesophyll morphogenesis. J R Soc Interface 2022; 19:20220602. [PMID: 36475391 PMCID: PMC9727661 DOI: 10.1098/rsif.2022.0602] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
The spongy mesophyll is a complex, porous tissue found in plant leaves that enables carbon capture and provides mechanical stability. Unlike many other biological tissues, which remain confluent throughout development, the spongy mesophyll must develop from an initially confluent tissue into a tortuous network of cells with a large proportion of intercellular airspace. How the airspace in the spongy mesophyll develops while the tissue remains mechanically stable is unknown. Here, we use computer simulations of deformable polygons to develop a purely mechanical model for the development of the spongy mesophyll tissue. By stipulating that cell wall growth and remodelling occurs only near void space, our computational model is able to recapitulate spongy mesophyll development observed in Arabidopsis thaliana leaves. We find that robust generation of pore space in the spongy mesophyll requires a balance of cell growth, adhesion, stiffness and tissue pressure to ensure cell networks become porous yet maintain mechanical stability. The success of this mechanical model of morphogenesis suggests that simple physical principles can coordinate and drive the development of complex plant tissues like the spongy mesophyll.
Collapse
Affiliation(s)
- John D. Treado
- Department of Mechanical Engineering and Materials Science and Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520, USA
| | - Adam B. Roddy
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Guillaume Théroux-Rancourt
- University of Natural Resources and Life Sciences, Vienna, Department of Integrative Biology and Biodiversity Research, Institute of Botany, 1180 Vienna, Austria
| | - Liyong Zhang
- Department of Biology, College of Arts and Science, University of Saskatchewan, Saskatoon, Canada S7N 5E2
| | - Chris Ambrose
- Department of Biology, College of Arts and Science, University of Saskatchewan, Saskatoon, Canada S7N 5E2
| | | | - Mark D. Shattuck
- Department of Physics and Benjamin Levich Institute, City College of New York, NY 10031, USA
| | - Corey S. O’Hern
- Department of Physics, Yale University, New Haven, CT 06520, USA
- Department of Applied Physics, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
14
|
Moukarzel CF, Naumis GG. Scaling to zero of compressive modulus in disordered isostatic cubic networks. Phys Rev E 2022; 106:035001. [PMID: 36266812 DOI: 10.1103/physreve.106.035001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Networks with as many mechanical constraints as degrees of freedom and no redundant constraints are minimally rigid or isostatic. Isostatic networks are relevant in the study of network glasses, soft matter, and sphere packings. Because of being at the verge of mechanical collapse, they have anomalous elastic and dynamical properties not found in the more commonly occurring hyperstatic networks. In particular, while hyperstatic networks are only slightly affected by geometric disorder, the elastic properties of isostatic networks are dramatically altered by it. In this paper, we show how disorder and system size strongly affect the ability of isostatic networks to sustain a compressive load. We develop an analytic method to calculate the bulk compressive modulus B for various boundary conditions as a function of disorder strength and system size. For simplicity, we consider square and cubic lattices with L^{d} sites, each having d mechanical degrees of freedom, and dL^{d} rotatable springs in the presence of hot-solid disorder of magnitude ε. Additionally, ∼L^{θ} sites may be fixed, thus introducing a nonextensive number of redundancies, either in the bulk or on the boundaries of the system. In all cases, B is analytically and numerically shown to decay as L^{-μ} with μ_{large}=d-θ for large disorder and μ_{small}=max{(d-θ-1),0} for small disorder. Furthermore B(L,ε)L^{μ_{small}}=g(λ) with λ=L^{(μ_{large}-μ_{small})}ε^{2} a scaling variable such that λ<<1 is small disorder and λ>1 is large disorder. The faster decay to zero of B in the large disorder regime results from a broad distribution of spring tensions, including tensions of both signs in equal proportions, which is remarkable since the system is under a purely compressive load. Notably, the bulk modulus is discontinuous at ε=0, a consequence of the fact that the regular network sits at an unstable degenerate configuration.
Collapse
Affiliation(s)
- Cristian F Moukarzel
- Depto. de Física Aplicada, CINVESTAV del IPN, Av. Tecnológico Km 6, 97310 Mérida, Yucatán, México
| | - Gerardo G Naumis
- Depto. de Sistemas Complejos, Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 20-364, 01000, CDMX, México
| |
Collapse
|
15
|
Arbabi S, Sahimi M. Elastic moduli of body-centered cubic lattice near rigidity percolation threshold: Finite-size effects and evidence for first-order phase transition. Phys Rev E 2021; 103:042314. [PMID: 34005887 DOI: 10.1103/physreve.103.042314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/02/2021] [Indexed: 11/07/2022]
Abstract
Extensive numerical simulations of rigidity percolation with only central forces in large three-dimensional lattices have indicated that many of their topological properties undergo a first-order phase transition at the rigidity percolation threshold p_{ce}. In contrast with such properties, past numerical calculations of the elastic moduli of the same lattices had provided evidence for a second-order phase transition. In this paper we present the results of extensive simulation of rigidity percolation in large body-centered cubic (bcc) lattices, and show that as the linear size L of the lattice increases, the elastic moduli close to p_{ce} decrease in a stepwise, discontinuous manner, a feature that is absent in lattices with L<30. The number and size of such steps increase with L. As p_{ce} is approached, long-range, nondecaying orientational correlations are built up, giving rise to compact, nonfractal clusters. As a result, we find that the backbone of the lattice at p_{ce} is compact with a fractal dimension D_{bb}≈3. The absence of fractal, scale-invariant clusters, the hallmark of second-order phase transitions, together with the stairwise behavior of the elastic moduli, provide strong evidence that, at least in bcc lattices, many of the topological properties of rigidity percolation as well as its elastic moduli may undergo a first-order phase transition at p_{ce}. In relatively small lattices, however, the boundary effects interfere with the nonlocal nature of the rigidity percolation. As a result, only when such effects diminish in large lattices does the true nature of the phase transition emerge.
Collapse
Affiliation(s)
- Sepehr Arbabi
- Department of Chemical Engineering, The University of Texas Permian Basin, Odessa, Texas 79762, USA
| | - Muhammad Sahimi
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211, USA
| |
Collapse
|
16
|
Petridou NI, Corominas-Murtra B, Heisenberg CP, Hannezo E. Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions. Cell 2021; 184:1914-1928.e19. [PMID: 33730596 PMCID: PMC8055543 DOI: 10.1016/j.cell.2021.02.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/09/2020] [Accepted: 02/04/2021] [Indexed: 12/15/2022]
Abstract
Embryo morphogenesis is impacted by dynamic changes in tissue material properties, which have been proposed to occur via processes akin to phase transitions (PTs). Here, we show that rigidity percolation provides a simple and robust theoretical framework to predict material/structural PTs of embryonic tissues from local cell connectivity. By using percolation theory, combined with directly monitoring dynamic changes in tissue rheology and cell contact mechanics, we demonstrate that the zebrafish blastoderm undergoes a genuine rigidity PT, brought about by a small reduction in adhesion-dependent cell connectivity below a critical value. We quantitatively predict and experimentally verify hallmarks of PTs, including power-law exponents and associated discontinuities of macroscopic observables. Finally, we show that this uniform PT depends on blastoderm cells undergoing meta-synchronous divisions causing random and, consequently, uniform changes in cell connectivity. Collectively, our theoretical and experimental findings reveal the structural basis of material PTs in an organismal context.
Collapse
Affiliation(s)
| | | | | | - Edouard Hannezo
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
17
|
Liu K, Kollmer JE, Daniels KE, Schwarz JM, Henkes S. Spongelike Rigid Structures in Frictional Granular Packings. PHYSICAL REVIEW LETTERS 2021; 126:088002. [PMID: 33709747 DOI: 10.1103/physrevlett.126.088002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
We show how rigidity emerges in experiments on sheared two-dimensional frictional granular materials by using generalizations of two methods for identifying rigid structures. Both approaches, the force-based dynamical matrix and the topology-based rigidity percolation, agree with each other and identify similar rigid structures. As the system becomes jammed, at a critical contact number z_{c}=2.4±0.1, a rigid backbone interspersed with floppy, particle-filled holes of a broad range of sizes emerges, creating a spongelike morphology. While the pressure within rigid structures always exceeds the pressure outside the rigid structures, they are not identified with the force chains of shear jamming. These findings highlight the need to focus on mechanical stability arising through arch structures and hinges at the mesoscale.
Collapse
Affiliation(s)
- Kuang Liu
- Physics Department, Syracuse University, Syracuse, New York 13244, USA
| | - Jonathan E Kollmer
- Experimental Astrophysics, Department of Physics, Universität Duisburg-Essen, Lotharst. 1, 47057 Duisburg, Dortmund, Germany
- Department of Physics, North Carolina State University, 27695 Raleigh, North Carolina, USA
| | - Karen E Daniels
- Department of Physics, North Carolina State University, 27695 Raleigh, North Carolina, USA
| | - J M Schwarz
- Physics Department, Syracuse University, Syracuse, New York 13244, USA
- Indian Creek Farm, Ithaca, New York 14850, USA
| | - Silke Henkes
- School of Mathematics, University of Bristol, BS8 1UG Bristol, England, United Kingdom
| |
Collapse
|
18
|
Machlus S, Zhang S, Mao X. Correlated rigidity percolation in fractal lattices. Phys Rev E 2021; 103:012104. [PMID: 33601532 DOI: 10.1103/physreve.103.012104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/17/2020] [Indexed: 11/07/2022]
Abstract
Rigidity percolation (RP) is the emergence of mechanical stability in networks. Motivated by the experimentally observed fractal nature of materials like colloidal gels and disordered fiber networks, we study RP in a fractal network where intrinsic correlations in particle positions is controlled by the fractal iteration. Specifically, we calculate the critical packing fractions of site-diluted lattices of Sierpiński gaskets (SG's) with varying degrees of fractal iteration. Our results suggest that although the correlation length exponent and fractal dimension of the RP of these lattices are identical to that of the regular triangular lattice, the critical volume fraction is dramatically lower due to the fractal nature of the network. Furthermore, we develop a simplified model for an SG lattice based on the fragility analysis of a single SG. This simplified model provides an upper bound for the critical packing fractions of the full fractal lattice, and this upper bound is strictly obeyed by the disorder averaged RP threshold of the fractal lattices. Our results characterize rigidity in ultralow-density fractal networks.
Collapse
Affiliation(s)
- Shae Machlus
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Shang Zhang
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiaoming Mao
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
19
|
Wang Y, Fang S, Xu N, Deng Y. Two-Scale Scenario of Rigidity Percolation of Sticky Particles. PHYSICAL REVIEW LETTERS 2020; 124:255501. [PMID: 32639758 DOI: 10.1103/physrevlett.124.255501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/09/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
In the presence of attraction, the jamming transition of packings of frictionless particles corresponds to the rigidity percolation. When the range of attraction is long, the distribution of the size of rigid clusters, P(s), is continuous and shows a power-law decay. For systems with short-range attractions, however, P(s) appears discontinuous. There is a power-law decay for small cluster sizes, followed by a low probability gap and a peak near the system size. We find that this appearing "discontinuity" does not mean that the transition is discontinuous. In fact, it signifies the coexistence of two distinct length scales, associated with the largest cluster and smaller ones, respectively. The comparison between the largest and second largest clusters indicates that their growth rates with system size are rather different. However, both cluster sizes tend to diverge in the large system size limit, suggesting that the jamming transition of systems with short-range attractions is still continuous. In the framework of the two-scale scenario, we also derive a generalized hyperscaling relation. With robust evidence, our work challenges the former single-scale view of the rigidity percolation.
Collapse
Affiliation(s)
- Yuchuan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Key Laboratory of Microscale Magnetic Resonance and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Sheng Fang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Ning Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Key Laboratory of Microscale Magnetic Resonance and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Youjin Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
20
|
Gnesotto FS, Remlein BM, Broedersz CP. Nonequilibrium dynamics of isostatic spring networks. Phys Rev E 2019; 100:013002. [PMID: 31499832 DOI: 10.1103/physreve.100.013002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Indexed: 11/07/2022]
Abstract
Marginally stable systems exhibit rich critical mechanical behavior. Such isostatic assemblies can be actively driven, but it is unclear how their critical nature affects their nonequilibrium dynamics. Here, we study the influence of isostaticity on the nonequilibrium dynamics of active spring networks. In our model, heterogeneously distributed white or colored, motorlike noise drives the system into a nonequilibrium steady state. We quantify the nonequilibrium dynamics of pairs of network nodes by the characteristic cycling frequency ω-an experimentally accessible measure of the circulation of the associated phase space currents. The distribution of these cycling frequencies exhibits critical scaling, which we approximately capture by a mean-field theory. Finally, we show that the scaling behavior of ω with distance is controlled by a diverging length scale. Overall, we provide a theoretical approach to elucidate the role of marginality in active disordered systems.
Collapse
Affiliation(s)
- Federico S Gnesotto
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | - Benedikt M Remlein
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | - Chase P Broedersz
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| |
Collapse
|
21
|
Sitharam M, Youngquist J, Nolan M, Peters J. Corner-Sharing Tetrahedra for Modeling Micro-structure. COMPUTER AIDED DESIGN 2019; 114:164-178. [PMID: 33776067 PMCID: PMC7993641 DOI: 10.1016/j.cad.2019.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This paper introduces Corner-Sharing Tetrahedra (CoSTs), a minimalist, constraint-graph representation of micro-structure. CoSTs have built-in structural guarantees, such as connectivity and minimal rigidity. CoSTs form a space, fully accessible via local operations, that is rich enough to design regular or irregular micro-structure at multiple scales within curved objects. All operations are based on efficient local graph manipulation, which also enables efficient analysis and adjustment of static physical properties. Geometric and material detail, parametric or solid splines, can be added locally, on-demand, for example, for printing.
Collapse
|
22
|
Li X, Das A, Bi D. Mechanical Heterogeneity in Tissues Promotes Rigidity and Controls Cellular Invasion. PHYSICAL REVIEW LETTERS 2019; 123:058101. [PMID: 31491312 DOI: 10.1103/physrevlett.123.058101] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/05/2019] [Indexed: 06/10/2023]
Abstract
We study the influence of cell-level mechanical heterogeneity in epithelial tissues using a vertex-based model. Heterogeneity is introduced into the cell shape index (p_{0}) that tunes the stiffness at a single-cell level. The addition of heterogeneity can always enhance the mechanical rigidity of the epithelial layer by increasing its shear modulus, hence making it more rigid. There is an excellent scaling collapse of our data as a function of a single scaling variable f_{r}, which accounts for the overall fraction of rigid cells. We identify a universal threshold f_{r}^{*} that demarcates fluid versus solid tissues. Furthermore, this rigidity onset is far below the contact percolation threshold of rigid cells. These results give rise to a separation of rigidity and contact percolation processes that leads to distinct types of solid states. We also investigate the influence of heterogeneity on tumor invasion dynamics. There is an overall impedance of invasion as the tissue becomes more rigid. Invasion can also occur in an intermediate heterogeneous solid state that is characterized by significant spatial-temporal intermittency.
Collapse
Affiliation(s)
- Xinzhi Li
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | - Amit Das
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
23
|
Zhang S, Zhang L, Bouzid M, Rocklin DZ, Del Gado E, Mao X. Correlated Rigidity Percolation and Colloidal Gels. PHYSICAL REVIEW LETTERS 2019; 123:058001. [PMID: 31491284 DOI: 10.1103/physrevlett.123.058001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 05/25/2023]
Abstract
Rigidity percolation (RP) occurs when mechanical stability emerges in disordered networks as constraints or components are added. Here we discuss RP with structural correlations, an effect ignored in classical theories albeit relevant to many liquid-to-amorphous-solid transitions, such as colloidal gelation, which are due to attractive interactions and aggregation. Using a lattice model, we show that structural correlations shift RP to lower volume fractions. Through molecular dynamics simulations, we show that increasing attraction in colloidal gelation increases structural correlation and thus lowers the RP transition, agreeing with experiments. Hence, the emergence of rigidity at colloidal gelation can be understood as a RP transition, but occurs at volume fractions far below values predicted by the classical RP, due to attractive interactions which induce structural correlation.
Collapse
Affiliation(s)
- Shang Zhang
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Leyou Zhang
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Mehdi Bouzid
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, D.C. 20057, USA
- LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - D Zeb Rocklin
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Emanuela Del Gado
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, D.C. 20057, USA
| | - Xiaoming Mao
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
24
|
Lubbers LA, van Hecke M. Excess floppy modes and multibranched mechanisms in metamaterials with symmetries. Phys Rev E 2019; 100:021001. [PMID: 31574693 DOI: 10.1103/physreve.100.021001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 06/10/2023]
Abstract
Floppy modes-deformations that cost zero energy-are central to the mechanics of a wide class of systems. For disordered systems, such as random networks and particle packings, it is well-understood how the number of floppy modes is controlled by the topology of the connections. Here we uncover that symmetric geometries, present in, e.g., mechanical metamaterials, can feature an unlimited number of excess floppy modes that are absent in generic geometries, and in addition can support floppy modes that are multibranched. We study the number Δ of excess floppy modes by comparing generic and symmetric geometries with identical topologies, and show that Δ is extensive, peaks at intermediate connection densities, and exhibits mean-field scaling. We then develop an approximate yet accurate cluster counting algorithm that captures these findings. Finally, we leverage our insights to design metamaterials with multiple folding mechanisms.
Collapse
Affiliation(s)
- Luuk A Lubbers
- Huygens-Kamerlingh Onnes Laboratory, Universiteit Leiden, P.O. Box 9504, NL-2300 RA Leiden, The Netherlands and AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Martin van Hecke
- Huygens-Kamerlingh Onnes Laboratory, Universiteit Leiden, P.O. Box 9504, NL-2300 RA Leiden, The Netherlands and AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
25
|
Callens M, Beltrami M, D’Agostino E, Pfeiffer H, Verellen D, Paradossi G, Van Den Abeele K. The photopolymerization of DC8,9PC in microbubbles. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.01.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Abstract
Origami structures with a large number of excess folds are capable of storing distinguishable geometric states that are energetically equivalent. As the number of excess folds is reduced, the system has fewer equivalent states and can eventually become rigid. We quantify this transition from a floppy to a rigid state as a function of the presence of folding constraints in a classic origami tessellation, Miura-ori. We show that in a fully triangulated Miura-ori that is maximally floppy, adding constraints via the elimination of diagonal folds in the quads decreases the number of degrees of freedom in the system, first linearly and then nonlinearly. In the nonlinear regime, mechanical cooperativity sets in via a redundancy in the assignment of constraints, and the degrees of freedom depend on constraint density in a scale-invariant manner. A percolation transition in the redundancy in the constraints as a function of constraint density suggests how excess folds in an origami structure can be used to store geometric information in a scale-invariant way.
Collapse
|
27
|
Shivers JL, Feng J, Sharma A, MacKintosh FC. Normal stress anisotropy and marginal stability in athermal elastic networks. SOFT MATTER 2019; 15:1666-1675. [PMID: 30680381 DOI: 10.1039/c8sm02192a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydrogels of semiflexible biopolymers such as collagen have been shown to contract axially under shear strain, in contrast to the axial dilation observed for most elastic materials. Recent work has shown that this behavior can be understood in terms of the porous, two-component nature and consequent time-dependent compressibility of hydrogels. The apparent normal stress measured by a torsional rheometer reflects only the tensile contribution of the axial component σzz on long (compressible) timescales, crossing over to the first normal stress difference, N1 = σxx - σzz at short (incompressible) times. While the behavior of N1 is well understood for isotropic viscoelastic materials undergoing affine shear deformation, biopolymer networks are often anisotropic and deform nonaffinely. Here, we numerically study the normal stresses that arise under shear in subisostatic, athermal semiflexible polymer networks. We show that such systems exhibit strong deviations from affine behavior and that these anomalies are controlled by a rigidity transition as a function of strain.
Collapse
Affiliation(s)
- Jordan L Shivers
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA.
| | | | | | | |
Collapse
|
28
|
Heroy S, Taylor D, Shi FB, Forest MG, Mucha PJ. RIGID GRAPH COMPRESSION: MOTIF-BASED RIGIDITY ANALYSIS FOR DISORDERED FIBER NETWORKS. MULTISCALE MODELING & SIMULATION : A SIAM INTERDISCIPLINARY JOURNAL 2018; 16:1283-1304. [PMID: 30450018 PMCID: PMC6234004 DOI: 10.1137/17m1157271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Using particle-scale models to accurately describe property enhancements and phase transitions in macroscopic behavior is a major engineering challenge in composite materials science. To address some of these challenges, we use the graph theoretic property of rigidity to model mechanical reinforcement in composites with stiff rod-like particles. We develop an efficient algorithmic approach called rigid graph compression (RGC) to describe the transition from floppy to rigid in disordered fiber networks ("rod-hinge systems"), which form the reinforcing phase in many composite systems. To establish RGC on a firm theoretical foundation, we adapt rigidity matroid theory to identify primitive topological network motifs that serve as rules for composing interacting rigid particles into larger rigid components. This approach is computationally efficient and stable, because RGC requires only topological information about rod interactions (encoded by a sparse unweighted network) rather than geometrical details such as rod locations or pairwise distances (as required in rigidity matroid theory). We conduct numerical experiments on simulated two-dimensional rod-hinge systems to demonstrate that RGC closely approximates the rigidity percolation threshold for such systems, through comparison with the pebble game algorithm (which is exact in two dimensions). Importantly, whereas the pebble game is derived from Laman's condition and is only valid in two dimensions, the RGC approach naturally extends to higher dimensions.
Collapse
Affiliation(s)
- Samuel Heroy
- Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599
| | - Dane Taylor
- Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599
| | - F Bill Shi
- The Odum Institute for Research in Social Science, University of North Carolina, Chapel Hill, NC 27599
| | - M Gregory Forest
- Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599
| | - Peter J Mucha
- Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
29
|
Entropy favors heterogeneous structures of networks near the rigidity threshold. Nat Commun 2018; 9:1359. [PMID: 29636480 PMCID: PMC5893606 DOI: 10.1038/s41467-018-03859-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/19/2018] [Indexed: 01/03/2023] Open
Abstract
The dynamical properties and mechanical functions of amorphous materials are governed by their microscopic structures, particularly the elasticity of the interaction networks, which is generally complicated by structural heterogeneity. This ubiquitous heterogeneous nature of amorphous materials is intriguingly attributed to a complex role of entropy. Here, we show in disordered networks that the vibrational entropy increases by creating phase-separated structures when the interaction connectivity is close to the onset of network rigidity. The stress energy, which conversely penalizes the heterogeneity, finally dominates a smaller vicinity of the rigidity threshold at the glass transition and creates a homogeneous intermediate phase. This picture of structures changing between homogeneous and heterogeneous phases by varying connectivity provides an interpretation of the transitions observed in chalcogenide glasses.
Collapse
|
30
|
Baumgarten K, Tighe BP. Normal Stresses, Contraction, and Stiffening in Sheared Elastic Networks. PHYSICAL REVIEW LETTERS 2018; 120:148004. [PMID: 29694121 DOI: 10.1103/physrevlett.120.148004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/20/2018] [Indexed: 06/08/2023]
Abstract
When elastic solids are sheared, a nonlinear effect named after Poynting gives rise to normal stresses or changes in volume. We provide a novel relation between the Poynting effect and the microscopic Grüneisen parameter, which quantifies how stretching shifts vibrational modes. By applying this relation to random spring networks, a minimal model for, e.g., biopolymer gels and solid foams, we find that networks contract or develop tension because they vibrate faster when stretched. The amplitude of the Poynting effect is sensitive to the network's linear elastic moduli, which can be tuned via its preparation protocol and connectivity. Finally, we show that the Poynting effect can be used to predict the finite strain scale where the material stiffens under shear.
Collapse
Affiliation(s)
- Karsten Baumgarten
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Brian P Tighe
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
31
|
Vermeulen MFJ, Bose A, Storm C, Ellenbroek WG. Geometry and the onset of rigidity in a disordered network. Phys Rev E 2017; 96:053003. [PMID: 29347645 DOI: 10.1103/physreve.96.053003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Disordered spring networks that are undercoordinated may abruptly rigidify when sufficient strain is applied. Since the deformation in response to applied strain does not change the generic quantifiers of network architecture, the number of nodes and the number of bonds between them, this rigidity transition must have a geometric origin. Naive, degree-of-freedom-based mechanical analyses such as the Maxwell-Calladine count or the pebble game algorithm overlook such geometric rigidity transitions and offer no means of predicting or characterizing them. We apply tools that were developed for the topological analysis of zero modes and states of self-stress on regular lattices to two-dimensional random spring networks and demonstrate that the onset of rigidity, at a finite simple shear strain γ^{★}, coincides with the appearance of a single state of self-stress, accompanied by a single floppy mode. The process conserves the topologically invariant difference between the number of zero modes and the number of states of self-stress but imparts a finite shear modulus to the spring network. Beyond the critical shear, the network acquires a highly anisotropic elastic modulus, resisting further deformation most strongly in the direction of the rigidifying shear. We confirm previously reported critical scaling of the corresponding differential shear modulus. In the subcritical regime, a singular value decomposition of the network's compatibility matrix foreshadows the onset of rigidity by way of a continuously vanishing singular value corresponding to the nascent state of self-stress.
Collapse
Affiliation(s)
- Mathijs F J Vermeulen
- Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, Netherlands
| | - Anwesha Bose
- Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, Netherlands
| | - Cornelis Storm
- Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, Netherlands
| | - Wouter G Ellenbroek
- Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, Netherlands
| |
Collapse
|
32
|
Hermans SM, Pfleger C, Nutschel C, Hanke CA, Gohlke H. Rigidity theory for biomolecules: concepts, software, and applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1311] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Susanne M.A. Hermans
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Christopher Pfleger
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Christina Nutschel
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Christian A. Hanke
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| |
Collapse
|
33
|
Gohlke H, Ben-Shalom IY, Kopitz H, Pfeiffer-Marek S, Baringhaus KH. Rigidity Theory-Based Approximation of Vibrational Entropy Changes upon Binding to Biomolecules. J Chem Theory Comput 2017; 13:1495-1502. [DOI: 10.1021/acs.jctc.7b00014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Holger Gohlke
- Institute
for Pharmaceutical and Medicinal Chemistry, Department of Mathematics
and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ido Y. Ben-Shalom
- Institute
for Pharmaceutical and Medicinal Chemistry, Department of Mathematics
and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Hannes Kopitz
- Institute
for Pharmaceutical and Medicinal Chemistry, Department of Mathematics
and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Stefania Pfeiffer-Marek
- R&D/Pre-Development Sciences, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Karl-Heinz Baringhaus
- R&D Resources/Site Direction, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
34
|
Das K, Sah BK, Kundu S. Cation-induced monolayer collapse at lower surface pressure follows specific headgroup percolation. Phys Rev E 2017; 95:022804. [PMID: 28298005 DOI: 10.1103/physreve.95.022804] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Indexed: 11/07/2022]
Abstract
A Langmuir monolayer can be considered as a two-dimensional (2D) sheet at higher surface pressure which structurally deform with mechanical compression depending upon the elastic nature of the monolayer. The deformed structures formed after a certain elastic limit are called collapsed structures. To explore monolayer collapses at lower surface pressure and to see the effect of ions on such monolayer collapses, out-of-plane structures and in-plane morphologies of stearic acid Langmuir monolayers have been studied both at lower (≈6.8) and higher (≈9.5) subphase pH in the presence of Mg^{2+},Ca^{2+},Zn^{2+},Cd^{2+}, and Ba^{2+} ions. At lower subphase pH and in the presence of all cations, the stearic acid monolayer remains as a monolayer before collapse, which generally takes place at higher surface pressure (π_{c}>50mN/m). However, at higher subphase pH, structural changes of stearic acid monolayers occur at relatively lower surface pressure depending upon the specific dissolved ions. Among the same group elements of Mg^{2+},Ca^{2+}, and Ba^{2+}, only for Ba^{2+} ions does monolayer to multilayer transition take place from a much lower surface pressure of the monolayer, remaining, however, as a monolayer for Mg^{2+} and Ca^{2+} ions. For another same group elements of Zn^{2+} and Cd^{2+} ions, a less covered bilayer structure forms on top of the monolayer structure at lower surface pressure, which is evidenced from both x-ray reflectometry and atomic force microscopy. Fourier transform infrared spectroscopy confirms the presence of two coexisting conformations formed by the two different metal-headgroup coordinations and the monolayer to trilayer or multilayer transformation takes place when the coverage ratio of the two molecular conformations changes from the critical value (p_{c}) of ≈0.66. Such ion-specific monolayer collapses are correlated with the 2D lattice percolation model.
Collapse
Affiliation(s)
- Kaushik Das
- Soft Nano Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
| | - Bijay Kumar Sah
- Soft Nano Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
| | - Sarathi Kundu
- Soft Nano Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
| |
Collapse
|
35
|
Dennison M, Jaspers M, Kouwer PHJ, Storm C, Rowan AE, MacKintosh FC. Critical behaviour in the nonlinear elastic response of hydrogels. SOFT MATTER 2016; 12:6995-7004. [PMID: 27464595 DOI: 10.1039/c6sm01033d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper we study the elastic response of synthetic hydrogels to an applied shear stress. The hydrogels studied here have previously been shown to mimic the behaviour of biopolymer networks when they are sufficiently far above the gel point. We show that near the gel point they exhibit an elastic response that is consistent with the predicted critical behaviour of networks near or below the isostatic point of marginal stability. This point separates rigid and floppy states, distinguished by the presence or absence of finite linear elastic moduli. Recent theoretical work has also focused on the response of such networks to finite or large deformations, both near and below the isostatic point. Despite this interest, experimental evidence for the existence of criticality in such networks has been lacking. Using computer simulations, we identify critical signatures in the mechanical response of sub-isostatic networks as a function of applied shear stress. We also present experimental evidence consistent with these predictions. Furthermore, our results show the existence of two distinct critical regimes, one of which arises from the nonlinear stretch response of semi-flexible polymers.
Collapse
Affiliation(s)
- M Dennison
- Department of Physics and Astronomy, Vrije Universiteit, 1081-HV Amsterdam, The Netherlands and Department of Applied Physics and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600-MB Eindhoven, The Netherlands
| | - M Jaspers
- Radboud University Nijmegen, Institute for Molecules and Materials, Department of Molecular Materials, 6525-AJ Nijmegen, The Netherlands
| | - P H J Kouwer
- Radboud University Nijmegen, Institute for Molecules and Materials, Department of Molecular Materials, 6525-AJ Nijmegen, The Netherlands
| | - C Storm
- Department of Applied Physics and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600-MB Eindhoven, The Netherlands
| | - A E Rowan
- Radboud University Nijmegen, Institute for Molecules and Materials, Department of Molecular Materials, 6525-AJ Nijmegen, The Netherlands
| | - F C MacKintosh
- Department of Physics and Astronomy, Vrije Universiteit, 1081-HV Amsterdam, The Netherlands and Departments of Chemical and Biomolecular Engineering, Chemistry and Physics, Rice University, Houston, TX, USA
| |
Collapse
|
36
|
The loss of tension in an infinite membrane with holes distributed according to a Poisson law. ADV APPL PROBAB 2016. [DOI: 10.1017/s0001867800011575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
What is the effect of punching holes at random in an infinite tensed membrane? When will the membrane still support tension? This problem was introduced by Connelly in connection with applications of rigidity theory to natural sciences. The answer clearly depends on the shapes and the distribution of the holes. We briefly outline a mathematical theory of tension based on graph rigidity theory and introduce a probabilistic model for this problem. We show that if the centers of the holes are distributed in ℝ2 according to a Poisson law with density λ > 0, and the shapes are i.i.d. and independent of the locations of their centers, the tension is lost on all of ℝ2 for any λ. After introducing a certain step-by-step dynamic for the loss of tension, we establish the existence of a nonrandom N = N(λ) such that N steps are almost surely enough for the loss of tension. Also, we prove that N(λ) > 2 almost surely for sufficiently small λ. The processes described in the paper are related to bootstrap and rigidity percolation.
Collapse
|
37
|
Menshikov MV, Rybnikov KA, Volkov SE. The loss of tension in an infinite membrane with holes distributed according to a Poisson law. ADV APPL PROBAB 2016. [DOI: 10.1239/aap/1025131219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
What is the effect of punching holes at random in an infinite tensed membrane? When will the membrane still support tension? This problem was introduced by Connelly in connection with applications of rigidity theory to natural sciences. The answer clearly depends on the shapes and the distribution of the holes. We briefly outline a mathematical theory of tension based on graph rigidity theory and introduce a probabilistic model for this problem. We show that if the centers of the holes are distributed in ℝ2 according to a Poisson law with density λ > 0, and the shapes are i.i.d. and independent of the locations of their centers, the tension is lost on all of ℝ2 for any λ. After introducing a certain step-by-step dynamic for the loss of tension, we establish the existence of a nonrandom N = N(λ) such that N steps are almost surely enough for the loss of tension. Also, we prove that N(λ) > 2 almost surely for sufficiently small λ. The processes described in the paper are related to bootstrap and rigidity percolation.
Collapse
|
38
|
Schweinhart B, Mason JK, MacPherson RD. Topological similarity of random cell complexes and applications. Phys Rev E 2016; 93:062111. [PMID: 27415212 DOI: 10.1103/physreve.93.062111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 06/06/2023]
Abstract
Although random cell complexes occur throughout the physical sciences, there does not appear to be a standard way to quantify their statistical similarities and differences. The various proposals in the literature are usually motivated by the analysis of particular physical systems and do not necessarily apply to general situations. The central concepts in this paper-the swatch and the cloth-provide a description of the local topology of a cell complex that is general (any physical system that can be represented as a cell complex is admissible) and complete (any statistical question about the local topology can be answered from the cloth). Furthermore, this approach allows a distance to be defined that measures the similarity of the local topology of two cell complexes. The distance is used to identify a steady state of a model grain boundary network, quantify the approach to this steady state, and show that the steady state is independent of the initial conditions. The same distance is then employed to show that the long-term properties in simulations of a specific model of a dislocation network do not depend on the implementation of dislocation intersections.
Collapse
Affiliation(s)
- B Schweinhart
- Center of Mathematical Sciences and Applications, Harvard University, Cambridge, Massachusetts 02138, USA
| | - J K Mason
- Boğaziçi University, Bebek, Istanbul 34342, Turkey
| | - R D MacPherson
- School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540, USA
| |
Collapse
|
39
|
Picu RC, Pal A, Lupulescu MV. Interlocking-induced stiffness in stochastically microcracked materials beyond the transport percolation threshold. Phys Rev E 2016; 93:043005. [PMID: 27176383 DOI: 10.1103/physreve.93.043005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 11/07/2022]
Abstract
We study the mechanical behavior of two-dimensional, stochastically microcracked continua in the range of crack densities close to, and above, the transport percolation threshold. We show that these materials retain stiffness up to crack densities much larger than the transport percolation threshold due to topological interlocking of sample subdomains. Even with a linear constitutive law for the continuum, the mechanical behavior becomes nonlinear in the range of crack densities bounded by the transport and stiffness percolation thresholds. The effect is due to the fractal nature of the fragmentation process and is not linked to the roughness of individual cracks.
Collapse
Affiliation(s)
- R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - A Pal
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - M V Lupulescu
- New York State Museum, Research and Collections, 3140 CEC, Albany, New York 12230, USA
| |
Collapse
|
40
|
Dennison M, Stark H. Viscoelastic properties of marginal networks in a solvent. Phys Rev E 2016; 93:022605. [PMID: 26986375 DOI: 10.1103/physreve.93.022605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Indexed: 06/05/2023]
Abstract
Polymer networks at the margins of mechanical stability are known to be highly sensitive to applied forces and fields and to exhibit an anomalously large resistance to deformation. In this paper, we study the effects of hydrodynamic interactions on the behavior of marginal networks using a hybrid molecular dynamics and multiparticle collision dynamics simulation technique. We examine how the filament and solvent properties affect the response of marginal networks to shear. We find that the stiffening of the network shows a stronger dependence on the shear frequency when hydrodynamic interactions are present than when they are not. The network shear modulus scales as G'∼ω(α(c)), with a critical stiffening exponent α(c) that can be controlled by varying the relative concentrations of the network and the solvent. Our results show that this arises due to the solvent aiding the relaxation of the network and suppressing the network nonaffinity, with the system deforming more affinely when hydrodynamic interactions are maximized.
Collapse
Affiliation(s)
- M Dennison
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - H Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| |
Collapse
|
41
|
Zhang L, Mao X. Finite-temperature mechanical instability in disordered lattices. Phys Rev E 2016; 93:022110. [PMID: 26986291 DOI: 10.1103/physreve.93.022110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 06/05/2023]
Abstract
Mechanical instability takes different forms in various ordered and disordered systems and little is known about how thermal fluctuations affect different classes of mechanical instabilities. We develop an analytic theory involving renormalization of rigidity and coherent potential approximation that can be used to understand finite-temperature mechanical stabilities in various disordered systems. We use this theory to study two disordered lattices: a randomly diluted triangular lattice and a randomly braced square lattice. These two lattices belong to two different universality classes as they approach mechanical instability at T=0. We show that thermal fluctuations stabilize both lattices. In particular, the triangular lattice displays a critical regime in which the shear modulus scales as G∼T(1/2), whereas the square lattice shows G∼T(2/3). We discuss generic scaling laws for finite-T mechanical instabilities and relate them to experimental systems.
Collapse
Affiliation(s)
- Leyou Zhang
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiaoming Mao
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
42
|
Theran L, Nixon A, Ross E, Sadjadi M, Servatius B, Thorpe MF. Anchored boundary conditions for locally isostatic networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:053306. [PMID: 26651815 DOI: 10.1103/physreve.92.053306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Indexed: 06/05/2023]
Abstract
Finite pieces of locally isostatic networks have a large number of floppy modes because of missing constraints at the surface. Here we show that by imposing suitable boundary conditions at the surface the network can be rendered effectively isostatic. We refer to these as anchored boundary conditions. An important example is formed by a two-dimensional network of corner sharing triangles, which is the focus of this paper. Another way of rendering such networks isostatic is by adding an external wire along which all unpinned vertices can slide (sliding boundary conditions). This approach also allows for the incorporation of boundaries associated with internal holes and complex sample geometries, which are illustrated with examples. The recent synthesis of bilayers of vitreous silica has provided impetus for this work. Experimental results from the imaging of finite pieces at the atomic level need such boundary conditions, if the observed structure is to be computer refined so that the interior atoms have the perception of being in an infinite isostatic environment.
Collapse
Affiliation(s)
- Louis Theran
- Aalto Science Institute and Department of Computer Science, Aalto University, Post Office Box 15500, 00076 Aalto, Finland
| | - Anthony Nixon
- Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, England, United Kingdom
| | - Elissa Ross
- MESH Consultants, Inc., Fields Institute for Research in the Mathematical Sciences, 222 College Street, Toronto, Ontario, Canada M5T 3J1
| | - Mahdi Sadjadi
- Department of Physics, Arizona State University, Tempe, Arizona 85287-1504, USA
| | - Brigitte Servatius
- Department of Mathematical Sciences, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, USA
| | - M F Thorpe
- Department of Physics, Arizona State University, Tempe, Arizona 85287-1504, USA and Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, England, United Kingdom
| |
Collapse
|
43
|
Karshikoff A, Nilsson L, Ladenstein R. Rigidity versus flexibility: the dilemma of understanding protein thermal stability. FEBS J 2015; 282:3899-917. [PMID: 26074325 DOI: 10.1111/febs.13343] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/17/2015] [Accepted: 06/09/2015] [Indexed: 01/19/2023]
Abstract
The role of fluctuations in protein thermostability has recently received considerable attention. In the current literature a dualistic picture can be found: thermostability seems to be associated with enhanced rigidity of the protein scaffold in parallel with the reduction of flexible parts of the structure. In contradiction to such arguments it has been shown by experimental studies and computer simulation that thermal tolerance of a protein is not necessarily correlated with the suppression of internal fluctuations and mobility. Both concepts, rigidity and flexibility, are derived from mechanical engineering and represent temporally insensitive features describing static properties, neglecting that relative motion at certain time scales is possible in structurally stable regions of a protein. This suggests that a strict separation of rigid and flexible parts of a protein molecule does not describe the reality correctly. In this work the concepts of mobility/flexibility versus rigidity will be critically reconsidered by taking into account molecular dynamics calculations of heat capacity and conformational entropy, salt bridge networks, electrostatic interactions in folded and unfolded states, and the emerging picture of protein thermostability in view of recently developed network theories. Last, but not least, the influence of high temperature on the active site and activity of enzymes will be considered.
Collapse
Affiliation(s)
- Andrey Karshikoff
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Rudolf Ladenstein
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
44
|
Lubensky TC, Kane CL, Mao X, Souslov A, Sun K. Phonons and elasticity in critically coordinated lattices. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:073901. [PMID: 26115553 DOI: 10.1088/0034-4885/78/7/073901] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Much of our understanding of vibrational excitations and elasticity is based upon analysis of frames consisting of sites connected by bonds occupied by central-force springs, the stability of which depends on the average number of neighbors per site z. When z < zc ≈ 2d, where d is the spatial dimension, frames are unstable with respect to internal deformations. This pedagogical review focuses on the properties of frames with z at or near zc, which model systems like randomly packed spheres near jamming and network glasses. Using an index theorem, N0 -NS = dN -NB relating the number of sites, N, and number of bonds, NB, to the number, N0, of modes of zero energy and the number, NS, of states of self stress, in which springs can be under positive or negative tension while forces on sites remain zero, it explores the properties of periodic square, kagome, and related lattices for which z = zc and the relation between states of self stress and zero modes in periodic lattices to the surface zero modes of finite free lattices (with free boundary conditions). It shows how modifications to the periodic kagome lattice can eliminate all but trivial translational zero modes and create topologically distinct classes, analogous to those of topological insulators, with protected zero modes at free boundaries and at interfaces between different topological classes.
Collapse
Affiliation(s)
- T C Lubensky
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
45
|
Habasaki J, Ngai KL. Rigidity and soft percolation in the glass transition of an atomistic model of ionic liquid, 1-ethyl-3-methyl imidazolium nitrate, from molecular dynamics simulations—Existence of infinite overlapping networks in a fragile ionic liquid. J Chem Phys 2015; 142:164501. [DOI: 10.1063/1.4918586] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Junko Habasaki
- Department of Innovative and Engineered Materials, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Nagatsuta 4259, Yokohama 226-8502, Japan
| | - K. L. Ngai
- CNR-IPCF Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
| |
Collapse
|
46
|
Ellenbroek WG, Hagh VF, Kumar A, Thorpe MF, van Hecke M. Rigidity loss in disordered systems: three scenarios. PHYSICAL REVIEW LETTERS 2015; 114:135501. [PMID: 25884127 DOI: 10.1103/physrevlett.114.135501] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Indexed: 06/04/2023]
Abstract
We reveal significant qualitative differences in the rigidity transition of three types of disordered network materials: randomly diluted spring networks, jammed sphere packings, and stress-relieved networks that are diluted using a protocol that avoids the appearance of floppy regions. The marginal state of jammed and stress-relieved networks are globally isostatic, while marginal randomly diluted networks show both overconstrained and underconstrained regions. When a single bond is added to or removed from these isostatic systems, jammed networks become globally overconstrained or floppy, whereas the effect on stress-relieved networks is more local and limited. These differences are also reflected in the linear elastic properties and point to the highly effective and unusual role of global self-organization in jammed sphere packings.
Collapse
Affiliation(s)
- Wouter G Ellenbroek
- Department of Applied Physics and Institute for Complex Molecular Systems, Eindhoven University of Technology, Postbus 513, NL-5600 MB Eindhoven, The Netherlands
| | - Varda F Hagh
- Department of Physics, Arizona State University, Tempe, Arizona 85287-1504, USA
| | - Avishek Kumar
- Department of Physics, Arizona State University, Tempe, Arizona 85287-1504, USA
| | - M F Thorpe
- Department of Physics, Arizona State University, Tempe, Arizona 85287-1504, USA
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, England
| | - Martin van Hecke
- Huygens-Kamerlingh Onnes Lab, Universiteit Leiden, P.O. Box 9504, NL-2300 RA Leiden, The Netherlands
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
47
|
Zhang L, Rocklin DZ, Chen BGG, Mao X. Rigidity percolation by next-nearest-neighbor bonds on generic and regular isostatic lattices. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032124. [PMID: 25871071 DOI: 10.1103/physreve.91.032124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Indexed: 06/04/2023]
Abstract
We study rigidity percolation transitions in two-dimensional central-force isostatic lattices, including the square and the kagome lattices, as next-nearest-neighbor bonds ("braces") are randomly added to the system. In particular, we focus on the differences between regular lattices, which are perfectly periodic, and generic lattices with the same topology of bonds but whose sites are at random positions in space. We find that the regular square and kagome lattices exhibit a rigidity percolation transition when the number of braces is ∼LlnL, where L is the linear size of the lattice. This transition exhibits features of both first-order and second-order transitions: The whole lattice becomes rigid at the transition, and a diverging length scale also exists. In contrast, we find that the rigidity percolation transition in the generic lattices occur when the number of braces is very close to the number obtained from Maxwell's law for floppy modes, which is ∼L. The transition in generic lattices is a very sharp first-order-like transition, at which the addition of one brace connects all small rigid regions in the bulk of the lattice, leaving only floppy modes on the edge. We characterize these transitions using numerical simulations and develop analytic theories capturing each transition. Our results relate to other interesting problems, including jamming and bootstrap percolation.
Collapse
Affiliation(s)
- Leyou Zhang
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - D Zeb Rocklin
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Bryan Gin-ge Chen
- Instituut-Lorentz for Theoretical Physics, Leiden University, NL 2333 CA Leiden, The Netherlands
| | - Xiaoming Mao
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
48
|
Mao X, Souslov A, Mendoza CI, Lubensky TC. Mechanical instability at finite temperature. Nat Commun 2015; 6:5968. [DOI: 10.1038/ncomms6968] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/26/2014] [Indexed: 11/09/2022] Open
|
49
|
Zhang T, Schwarz JM, Das M. Mechanics of anisotropic spring networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062139. [PMID: 25615076 DOI: 10.1103/physreve.90.062139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Indexed: 06/04/2023]
Abstract
We construct and analyze a model for a disordered linear spring network with anisotropy. The modeling is motivated by, for example, granular systems, nematic elastomers, and ultimately cytoskeletal networks exhibiting some underlying anisotropy. The model consists of a triangular lattice with two different bond occupation probabilities, p(x) and p(y), for the linear springs. We develop an effective medium theory (EMT) to describe the network elasticity as a function of p(x) and p(y). We find that the onset of rigidity in the EMT agrees with Maxwell constraint counting. We also find beyond linear behavior in the shear and bulk modulus as a function of occupation probability in the rigid phase for small strains, which differs from the isotropic case. We compare our EMT with numerical simulations to find rather good agreement. Finally, we discuss the implications of extending the reach of effective medium theory as well as draw connections with prior work on both anisotropic and isotropic spring networks.
Collapse
Affiliation(s)
- T Zhang
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| | - J M Schwarz
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| | - Moumita Das
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, USA
| |
Collapse
|
50
|
Yan L, Wyart M. Evolution of covalent networks under cooling: contrasting the rigidity window and jamming scenarios. PHYSICAL REVIEW LETTERS 2014; 113:215504. [PMID: 25479505 DOI: 10.1103/physrevlett.113.215504] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Indexed: 06/04/2023]
Abstract
We study the evolution of structural disorder under cooling in supercooled liquids, focusing on covalent networks. We introduce a model for the energy of networks that incorporates weak noncovalent interactions. We show that at low temperature these interactions considerably affect the network topology near the rigidity transition that occurs as the coordination increases. As a result, this transition becomes mean field and does not present a line of critical points previously argued for, the "rigidity window." Vibrational modes are then not fractons but instead are similar to the anomalous modes observed in packings of particles near jamming. These results suggest an alternative interpretation for the intermediate phase observed in chalcogenides.
Collapse
Affiliation(s)
- Le Yan
- Department of Physics, Center for Soft Matter Research, New York University, 4 Washington Place, New York, New York 10003, USA
| | - Matthieu Wyart
- Department of Physics, Center for Soft Matter Research, New York University, 4 Washington Place, New York, New York 10003, USA
| |
Collapse
|