1
|
Bonn L, Ardaševa A, Mueller R, Shendruk TN, Doostmohammadi A. Fluctuation-induced dynamics of nematic topological defects. Phys Rev E 2022; 106:044706. [PMID: 36397561 DOI: 10.1103/physreve.106.044706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Topological defects are increasingly being identified in various biological systems, where their characteristic flow fields and stress patterns are associated with continuous active stress generation by biological entities. Here, using numerical simulations of continuum fluctuating nematohydrodynamics, we show that even in the absence of any specific form of active stresses associated with self-propulsion, mesoscopic fluctuations in either orientational alignment or hydrodynamics can independently result in flow patterns around topological defects that resemble the ones observed in active systems. Our simulations further show the possibility of extensile- and contractile-like motion of fluctuation-induced positive half-integer topological defects. Remarkably, isotropic stress fields also reproduce the experimentally measured stress patterns around topological defects in epithelia. Our findings further reveal that extensile- or contractile-like flow and stress patterns around fluctuation-induced defects are governed by passive elastic stresses and flow-aligning behavior of the nematics.
Collapse
Affiliation(s)
- Lasse Bonn
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen 2100, Denmark
| | - Aleksandra Ardaševa
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen 2100, Denmark
| | - Romain Mueller
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Tyler N Shendruk
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen 2100, Denmark
| |
Collapse
|
2
|
Hoshino T, Liu MW, Wu KA, Chen HY, Tsuruyama T, Komura S. Pattern formation of skin cancers: Effects of cancer proliferation and hydrodynamic interactions. Phys Rev E 2019; 99:032416. [PMID: 30999422 DOI: 10.1103/physreve.99.032416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Indexed: 11/07/2022]
Abstract
We study pattern formation of skin cancers by means of numerical simulation of a binary system consisting of cancer and healthy cells. We extend the conventional model H for macrophase separations by considering a logistic growth of cancer cells and also a mechanical friction between dermis and epidermis. Importantly, our model exhibits a microphase separation due to the proliferation of cancer cells. By numerically solving the time evolution equations of the cancer composition and its velocity, we show that the phase separation kinetics strongly depends on the cell proliferation rate as well as on the strength of hydrodynamic interactions. A steady-state diagram of cancer patterns is established in terms of these two dynamical parameters and some of the patterns correspond to clinically observed cancer patterns. Furthermore, we examine in detail the time evolution of the average composition of cancer cells and the characteristic length of the microstructures. Our results demonstrate that different sequence of cancer patterns can be obtained by changing the proliferation rate and/or hydrodynamic interactions.
Collapse
Affiliation(s)
- Takuma Hoshino
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Ming-Wei Liu
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuo-An Wu
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsuan-Yi Chen
- Department of Physics, National Central University, Jhongli 32001, Taiwan and Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Tatsuaki Tsuruyama
- Center for Anatomical Studies, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Shigeyuki Komura
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
3
|
Gidituri H, Anand DV, Vedantam S, Panchagnula MV. Dissipative particle dynamics study of phase separation in binary fluid mixtures in periodic and confined domains. J Chem Phys 2017; 147:074703. [PMID: 28830165 DOI: 10.1063/1.4999096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We investigate the phase separation behavior of binary mixtures in two-dimensional periodic and confined domains using dissipative particle dynamics. Two canonical problems of fluid mechanics are considered for the confined domains: square cavity with no-slip walls and lid-driven cavity with one driven wall. The dynamics is studied for both weakly and strongly separating mixtures and different area fractions. The phase separation process is analyzed using the structure factor and the total interface length. The dynamics of phase separation in the square cavity and lid-driven cavity are observed to be significantly slower when compared to the dynamics in the periodic domain. The presence of the no-slip walls and the inertial effects significantly influences the separation dynamics. Finally, we show that the growth exponent for the strongly separating case is invariant to changes in the inter-species repulsion parameter.
Collapse
Affiliation(s)
- Harinadha Gidituri
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| | - D Vijay Anand
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Srikanth Vedantam
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Mahesh V Panchagnula
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
4
|
Belardinelli D, Sbragaglia M, Biferale L, Gross M, Varnik F. Fluctuating multicomponent lattice Boltzmann model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:023313. [PMID: 25768641 DOI: 10.1103/physreve.91.023313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Indexed: 06/04/2023]
Abstract
Current implementations of fluctuating lattice Boltzmann equations (FLBEs) describe single component fluids. In this paper, a model based on the continuum kinetic Boltzmann equation for describing multicomponent fluids is extended to incorporate the effects of thermal fluctuations. The thus obtained fluctuating Boltzmann equation is first linearized to apply the theory of linear fluctuations, and expressions for the noise covariances are determined by invoking the fluctuation-dissipation theorem directly at the kinetic level. Crucial for our analysis is the projection of the Boltzmann equation onto the orthonormal Hermite basis. By integrating in space and time the fluctuating Boltzmann equation with a discrete number of velocities, the FLBE is obtained for both ideal and nonideal multicomponent fluids. Numerical simulations are specialized to the case where mean-field interactions are introduced on the lattice, indicating a proper thermalization of the system.
Collapse
Affiliation(s)
- D Belardinelli
- Department of Physics, University of Rome "Tor Vergata," Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - M Sbragaglia
- Department of Physics, University of Rome "Tor Vergata," Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - L Biferale
- Department of Physics, University of Rome "Tor Vergata," Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - M Gross
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany
- Institut für Theoretische Physik IV, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - F Varnik
- Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| |
Collapse
|
5
|
Chaudhri A, Bell JB, Garcia AL, Donev A. Modeling multiphase flow using fluctuating hydrodynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:033014. [PMID: 25314536 DOI: 10.1103/physreve.90.033014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Indexed: 06/04/2023]
Abstract
Fluctuating hydrodynamics provides a model for fluids at mesoscopic scales where thermal fluctuations can have a significant impact on the behavior of the system. Here we investigate a model for fluctuating hydrodynamics of a single-component, multiphase flow in the neighborhood of the critical point. The system is modeled using a compressible flow formulation with a van der Waals equation of state, incorporating a Korteweg stress term to treat interfacial tension. We present a numerical algorithm for modeling this system based on an extension of algorithms developed for fluctuating hydrodynamics for ideal fluids. The scheme is validated by comparison of measured structure factors and capillary wave spectra with equilibrium theory. We also present several nonequilibrium examples to illustrate the capability of the algorithm to model multiphase fluid phenomena in a neighborhood of the critical point. These examples include a study of the impact of fluctuations on the spinodal decomposition following a rapid quench, as well as the piston effect in a cavity with supercooled walls. The conclusion in both cases is that thermal fluctuations affect the size and growth of the domains in off-critical quenches.
Collapse
Affiliation(s)
- Anuj Chaudhri
- Computational Research Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
| | - John B Bell
- Computational Research Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
| | - Alejandro L Garcia
- Department of Physics and Astronomy, San Jose State University, San Jose, California 95192, USA
| | - Aleksandar Donev
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
| |
Collapse
|
6
|
Aydin F, Dutt M. Bioinspired Vesicles Encompassing Two-Tail Phospholipids: Self-Assembly and Phase Segregation via Implicit Solvent Coarse-Grained Molecular Dynamics. J Phys Chem B 2014; 118:8614-23. [DOI: 10.1021/jp503376r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Fikret Aydin
- Department
of Chemical and Biochemical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Meenakshi Dutt
- Department
of Chemical and Biochemical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
7
|
Camley BA, Brown FLH. Dynamic scaling in phase separation kinetics for quasi-two-dimensional membranes. J Chem Phys 2012; 135:225106. [PMID: 22168731 DOI: 10.1063/1.3662131] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We consider the dynamics of phase separation in lipid bilayer membranes, modeled as flat two-dimensional liquid sheets within a bulk fluid, both in the creeping flow approximation. We present scaling arguments that suggest asymptotic coarsening in these systems is characterized by a length scale R(t) ~ t(1/2) for critical (bicontinuous) phase separation and R(t) ~t(1/3) for off-critical concentrations (droplet morphology). In this limit, the bulk fluid is the primary source of dissipation. We also address these questions with continuum stochastic hydrodynamic simulations. We see evidence of scaling violation in critical phase separation, where isolated circular domains coarsen slower than elongated ones. However, we also find a region of apparent scaling where R(t) ~ t(1/2) is observed. This appears to be due to the competition of thermal and hydrodynamic effects. We argue that the diversity of scaling exponents measured in experiment and prior simulations can in part be attributed to certain measurements lying outside the asymptotic long-length-scale regime, and provide a framework to help understand these results. We also discuss a few simple generalizations to confined membranes and membranes in which inertia is relevant.
Collapse
Affiliation(s)
- Brian A Camley
- Department of Physics, University of California, Santa Barbara, California 93106, USA.
| | | |
Collapse
|
8
|
Thampi SP, Pagonabarraga I, Adhikari R. Lattice-Boltzmann-Langevin simulations of binary mixtures. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:046709. [PMID: 22181309 DOI: 10.1103/physreve.84.046709] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 09/15/2011] [Indexed: 05/31/2023]
Abstract
We report a hybrid numerical method for the solution of the Model H fluctuating hydrodynamic equations for binary mixtures. The momentum conservation equations with Landau-Lifshitz stresses are solved using the fluctuating lattice Boltzmann equation while the order parameter conservation equation with Langevin fluxes is solved using stochastic method of lines. Two methods, based on finite difference and finite volume, are proposed for spatial discretization of the order parameter equation. Special care is taken to ensure that the fluctuation-dissipation theorem is maintained at the lattice level in both cases. The methods are benchmarked by comparing static and dynamic correlations and excellent agreement is found between analytical and numerical results. The Galilean invariance of the model is tested and found to be satisfactory. Thermally induced capillary fluctuations of the interface are captured accurately, indicating that the model can be used to study nonlinear fluctuations.
Collapse
Affiliation(s)
- Sumesh P Thampi
- Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | | | | |
Collapse
|
9
|
Kadau K, Barber JL, Germann TC, Alder BJ. Scaling of atomistic fluid dynamics simulations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:045301. [PMID: 18999481 DOI: 10.1103/physreve.78.045301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Indexed: 05/27/2023]
Abstract
We have performed a series of large-scale atomistic simulations of the Rayleigh-Taylor instability including up to 5.7 x 10(9) particles and spanning time and length scales of up to 170 ns and 45 microm , respectively. The results suggest that atomistic fluid dynamics simulations exhibit the same scaling as solutions of the continuum Navier-Stokes equations. Furthermore, a comparison with macroscopic Rayleigh-Taylor experiments suggests that the results of such atomistic simulations can, in fact, be scaled up to macroscopic dimensions, even for complex, nonstationary flows.
Collapse
Affiliation(s)
- Kai Kadau
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | | | |
Collapse
|
10
|
Travasso RDM, Buxton GA, Kuksenok O, Good K, Balazs AC. Modeling the morphology and mechanical properties of sheared ternary mixtures. J Chem Phys 2005; 122:194906. [PMID: 16161616 DOI: 10.1063/1.1903883] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Through a combination of simulation techniques, we determine both the structural evolution and mechanical properties of blends formed from immiscible ternary mixtures. In this approach, we first use the lattice Boltzmann method to simulate the phase separation dynamics of A/B/C fluid mixtures for varying compositions within the spinodal region. We also investigate the effect of an imposed shear on the phase ordering of the mixture. We assume that the fluid is quenched sufficiently rapidly that the phase-separated structure is preserved in the resultant solid. Then, the output from our morphological studies serves as the input to the lattice spring model, which is used to simulate the elastic response of solids to an applied deformation. These simulations reveal how the local stress and strain fields and the global Young's modulus depend on the composition of the blend and the stiffness of the components. By comparing the results for the sheared and unsheared cases, we can isolate optimal processing conditions for enhancing the mechanical performance of the blends. Overall, the findings provide fundamental insight into the relationship between structure, processing, and properties for heterogeneous materials and can yield guidelines for formulating blends with the desired macroscopic mechanical behavior.
Collapse
Affiliation(s)
- Rui D M Travasso
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
11
|
Love PJ, Boghosian BM, Meyer DA. Lattice gas simulations of dynamical geometry in one dimension. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2004; 362:1667-1675. [PMID: 15306438 DOI: 10.1098/rsta.2004.1409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present numerical results obtained using a lattice gas model with dynamical geometry. The (irreversible) macroscopic behaviour of the geometry (size) of the lattice is discussed in terms of a simple scaling theory and obtained numerically. The emergence of irreversible behaviour from the reversible microscopic lattice gas rules is discussed in terms of the constraint that the macroscopic evolution be reproducible. The average size of the lattice exhibits power-law growth with exponent at late times. The deviation of the macroscopic behaviour from reproducibility for particular initial conditions ('rogue states') is investigated as a function of system size. The number of such 'rogue states' is observed to decrease with increasing system size. Two mean-field analyses of the macroscopic behaviour are also presented.
Collapse
Affiliation(s)
- Peter J Love
- Department of Mathematics, Tufts University, Medford, MA 02155, USA.
| | | | | |
Collapse
|
12
|
Furukawa H. Spinodal decomposition of two-dimensional fluid mixtures: A spectral analysis of droplet growth. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 2000; 61:1423-1431. [PMID: 11046423 DOI: 10.1103/physreve.61.1423] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/1999] [Indexed: 05/23/2023]
Abstract
The spinodal decomposition of two-dimensional fluid mixture is studied by numerical simulation. For the high viscous fluid mixture it has not been evident whether the interfacial tension is relevant to the droplet growth or not. A length scale R defined by the structure function extracting the effect of the long wavelength mode justifies a rapid growth close to R approximately t, but the length scale energetically defined reveals a much slower growth R approximately t(0.5), where t is time. This discrepancy represents the violation of the dynamical scaling with single length scale. The slow gowth of the length scale is attributed to the accumulation of the number of isolated droplets in phase separating state, whereas the rapid growth represents the relevance of the surface tension as the driving force in two dimensions. For a low viscous fluid mixture the dynamical scaling is a good assumption with the growth law R approximately t(2/3) up to a very large Reynolds number Re approximately 1500, which is the limit in the present simulation.
Collapse
Affiliation(s)
- H Furukawa
- Faculty of Education, Yamaguchi University, Yamaguchi 753-8513, Japan
| |
Collapse
|