Bentrem FW, Xie J, Pandey RB. Interface relaxation in electrophoretic deposition of polymer chains: effects of segmental dynamics, molecular weight, and field.
PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2002;
65:041606. [PMID:
12005836 DOI:
10.1103/physreve.65.041606]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2001] [Indexed: 05/23/2023]
Abstract
Using different segmental dynamics and relaxation, characteristics of the interface growth is examined in an electrophoretic deposition of polymer chains on a three (2+1)-dimensional discrete lattice with a Monte Carlo simulation. Incorporation of faster modes such as crankshaft and reptation movements along with the relatively slow kink-jump dynamics seems crucial in relaxing the interface width. As the continuously released polymer chains are driven (via segmental movements) and deposited, the interface width W grows with the number of time steps t, W proportional, variant t(beta), (beta approximately 0.4-0.8), which is followed by its saturation to a steady-state value W(s). Stopping the release of additional chains after saturation while continuing the segmental movements relaxes the saturated width to an equilibrium value (W(s)-->W(r)). Scaling of the relaxed interface width W(r) with the driving field E, W(r) proportional, variant E(-1/2) remains similar to that of the steady-state W(s) width. In contrast to monotonic increase of the steady-state width W(s), the relaxed interface width W(r) is found to decay (possibly as a stretched exponential) with the molecular weight.
Collapse