1
|
Mallamace F, Mensitieri G, Salzano de Luna M, Lanzafame P, Papanikolaou G, Mallamace D. The Interplay between the Theories of Mode Coupling and of Percolation Transition in Attractive Colloidal Systems. Int J Mol Sci 2022; 23:5316. [PMID: 35628124 PMCID: PMC9141735 DOI: 10.3390/ijms23105316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
In the recent years a considerable effort has been devoted to foster the understanding of the basic mechanisms underlying the dynamical arrest that is involved in glass forming in supercooled liquids and in the sol-gel transition. The elucidation of the nature of such processes represents one of the most challenging unsolved problems in the field of material science. In this context, two important theories have contributed significantly to the interpretation of these phenomena: the Mode-Coupling theory (MCT) and the Percolation theory (PT). These theories are rooted on the two pillars of statistical physics, universality and scale laws, and their original formulations have been subsequently modified to account for the fundamental concepts of Energy Landscape (EL) and of the universality of the fragile to strong dynamical crossover (FSC). In this review, we discuss experimental and theoretical results, including Molecular Dynamics (MD) simulations, reported in the literature for colloidal and polymer systems displaying both glass and sol-gel transitions. Special focus is dedicated to the analysis of the interferences between these transitions and on the possible interplay between MCT and PT. By reviewing recent theoretical developments, we show that such interplay between sol-gel and glass transitions may be interpreted in terms of the extended F13 MCT model that describes these processes based on the presence of a glass-glass transition line terminating in an A3 cusp-like singularity (near which the logarithmic decay of the density correlator is observed). This transition line originates from the presence of two different amorphous structures, one generated by the inter-particle attraction and the other by the pure repulsion characteristic of hard spheres. We show here, combining literature results with some new results, that such a situation can be generated, and therefore experimentally studied, by considering colloidal-like particles interacting via a hard core plus an attractive square well potential. In the final part of this review, scaling laws associated both to MCT and PT are applied to describe, by means of these two theories, the specific viscoelastic properties of some systems.
Collapse
Affiliation(s)
- Francesco Mallamace
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
| | - Giuseppe Mensitieri
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (G.M.); (M.S.d.L.)
| | - Martina Salzano de Luna
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (G.M.); (M.S.d.L.)
| | - Paola Lanzafame
- Departments of ChiBioFarAm and MIFT—Section of Industrial Chemistry, University of Messina, CASPE-INSTM, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (P.L.); (G.P.)
| | - Georgia Papanikolaou
- Departments of ChiBioFarAm and MIFT—Section of Industrial Chemistry, University of Messina, CASPE-INSTM, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (P.L.); (G.P.)
| | - Domenico Mallamace
- Departments of ChiBioFarAm—Section of Industrial Chemistry, University of Messina, CASPE-INSTM, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy;
| |
Collapse
|
2
|
Körber T, Pötzschner B, Krohn F, Rössler EA. Reorientational dynamics in highly asymmetric binary low-molecular mixtures-A quantitative comparison of dielectric and NMR spectroscopy results. J Chem Phys 2021; 155:024504. [PMID: 34266265 DOI: 10.1063/5.0056838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Previously, we scrutinized the dielectric spectra of a binary glass former made by a low-molecular high-Tg component 2-(m-tertbutylphenyl)-2'-tertbutyl-9,9'-spirobi[9H]fluorene (m-TPTS; Tg = 350 K) and low-Tg tripropyl phosphate (TPP; Tg = 134 K) [Körber et al., Phys. Chem. Chem. Phys. 23, 7200 (2021)]. Here, we analyze nuclear magnetic resonance (NMR) spectra and stimulated echo decays of deuterated m-TPTS-d4 (2H) and TPP (31P) and attempt to understand the dielectric spectra in terms of component specific dynamics. The high-Tg component (α1) shows relaxation similar to that of neat systems, yet with some broadening upon mixing. This correlates with high-frequency broadening of the dielectric spectra. The low-Tg component (α2) exhibits highly stretched relaxations and strong dynamic heterogeneities indicated by "two-phase" spectra, reflecting varying fractions of fast and slow liquid-like reorienting molecules. Missing for the high-Tg component, such two-phase spectra are identified down to wTPP = 0.04, indicating that isotropic reorientation prevails in the rigid high-Tg matrix stretching from close to Tg TPP to Tg1 wTPP. This correlates with low-frequency broadening of the dielectric spectra. Two Tg values are defined: Tg1 (wTPP) displays a plasticizer effect, whereas Tg2 (wTPP) passes through a maximum, signaling extreme separation of the component dynamics at low wTPP. We suggest understanding the latter counter-intuitive feature by referring to a crossover from "single glass" to "double glass" scenario revealed by recent MD simulations. Analyses reveal that a second population of TPP molecules exists, which is associated with the dynamics of the high-Tg component. However, the fractions are lower than suggested by the dielectric spectra. We discuss this discrepancy considering the role of collective dynamics probed by dielectric but not by NMR spectroscopy.
Collapse
Affiliation(s)
- Thomas Körber
- Department of Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, 95440 Bayreuth, Germany
| | - Björn Pötzschner
- Department of Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, 95440 Bayreuth, Germany
| | - Felix Krohn
- Department of Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95440 Bayreuth, Germany
| | - Ernst A Rössler
- Department of Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
3
|
Körber T, Krohn F, Neuber C, Schmidt HW, Rössler EA. Reorientational dynamics of highly asymmetric binary non-polymeric mixtures – a dielectric spectroscopy study. Phys Chem Chem Phys 2021; 23:7200-7212. [DOI: 10.1039/d0cp06652d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two separated relaxations α1 and α2 with different temperature dependences are identified in the mixtures. They are attributed to the dynamics associated with the high-Tg (α1) and the low-Tg component (α2) with distinct Tg concentration dependences.
Collapse
Affiliation(s)
- Thomas Körber
- Department of Inorganic Chemistry III and Northern Bavarian NMR Centre
- University of Bayreuth
- 95440 Bayreuth
- Germany
| | - Felix Krohn
- Department of Macromolecular Chemistry and Bavarian Polymer Institute
- University of Bayreuth
- 95440 Bayreuth
- Germany
| | - Christian Neuber
- Department of Macromolecular Chemistry and Bavarian Polymer Institute
- University of Bayreuth
- 95440 Bayreuth
- Germany
| | - Hans-Werner Schmidt
- Department of Macromolecular Chemistry and Bavarian Polymer Institute
- University of Bayreuth
- 95440 Bayreuth
- Germany
| | - Ernst A. Rössler
- Department of Inorganic Chemistry III and Northern Bavarian NMR Centre
- University of Bayreuth
- 95440 Bayreuth
- Germany
| |
Collapse
|
4
|
Körber T, Minikejew R, Pötzschner B, Bock D, Rössler EA. Dynamically asymmetric binary glass formers studied by dielectric and NMR spectroscopy. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:143. [PMID: 31773406 DOI: 10.1140/epje/i2019-11909-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
We investigate the component dynamics in asymmetric binary glass formers. Focusing on the dielectric spectra of the high-Tg components m-tricresyl phosphate and quinaldine mixed with toluene as low-Tg component, the broadend spectra cannot be described by Kohlrausch or Cole-Davidson (CD) functions. Instead, we apply a generalized CD function which allows to control the width of the susceptibility independently of its high-frequency flank. The spectra show a common broadening and failure of the frequency-temperature superposition with increasing toluene concentration. This is confirmed by stimulated echo experiments showing an increased stretching of the probed orientational correlation function. In analogy to the definition of Tg, we consider "isodynamic points". For each component, a different but linear concentration dependence of 1/Tiso is revealed, indicating different time scales. Qualitativly, we do not find significant differences for the present mixtures with Tg-contrasts of 63-89K compared to those with larger Tg-contrast ( [Formula: see text] K): Whereas the high-Tg component shows relaxation features similar to those of neat glass formers, yet, with "atypical" weak relaxation broadening, the faster low-Tg component displays pronounced dynamic heterogeneities. This is supported by scrutinizing NMR relaxation data of several mixtures investigated previously as a function of concentration. A universal evolution of the dynamics of the high-Tg as well as the low-Tg component is suggested for mixtures with high [Formula: see text]Tg .
Collapse
Affiliation(s)
- Th Körber
- Universität Bayreuth, Anorganische Chemie III and Nordbayerisches NMR-Zentrum, D-95440, Bayreuth, Germany
| | - R Minikejew
- Universität Bayreuth, Anorganische Chemie III and Nordbayerisches NMR-Zentrum, D-95440, Bayreuth, Germany
| | - B Pötzschner
- Universität Bayreuth, Anorganische Chemie III and Nordbayerisches NMR-Zentrum, D-95440, Bayreuth, Germany
| | - D Bock
- Universität Bayreuth, Anorganische Chemie III and Nordbayerisches NMR-Zentrum, D-95440, Bayreuth, Germany
| | - E A Rössler
- Universität Bayreuth, Anorganische Chemie III and Nordbayerisches NMR-Zentrum, D-95440, Bayreuth, Germany.
| |
Collapse
|
5
|
Müller N, Vogel M. Relation between concentration fluctuations and dynamical heterogeneities in binary glass-forming liquids: A molecular dynamics simulation study. J Chem Phys 2019; 150:064502. [DOI: 10.1063/1.5059355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Niels Müller
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Michael Vogel
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
6
|
Yamaguchi T, Faraone A. Analysis of shear viscosity and viscoelastic relaxation of liquid methanol based on molecular dynamics simulation and mode-coupling theory. J Chem Phys 2018; 146:244506. [PMID: 28668041 DOI: 10.1063/1.4990408] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of the prepeak structure of liquid methanol in determining its shear viscosity was studied by means of molecular dynamics (MD) simulation and mode-coupling theory (MCT). The autocorrelation function of the shear stress and the intermediate scattering functions at both the prepeak and the main peak were calculated from the MD trajectories. Their comparison based on MCT suggests that the viscoelastic relaxation in the ps regime is affected by the slow structural dynamics at the prepeak. On the other hand, the MCT for molecular liquids based on the interaction-site model (site-site MCT) fails to describe the coupling between the prepeak dynamics and shear stress. The direct evaluation of the coupling between the two-body density and the shear stress reveals that the viscoelastic relaxation is actually affected by the prepeak dynamics, although the coupling is not captured by the site-site MCT. The site-site MCT works well for a model methanol without partial charges, suggesting that the failure of the site-site MCT originates from the existence of a hydrogen-bonding network structure.
Collapse
Affiliation(s)
- Tsuyoshi Yamaguchi
- Graduate School of Engineering, Nagoya University, Furo-cho B2-3 (611), Chikusa, Nagoya, Aichi 464-8603, Japan
| | - Antonio Faraone
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
7
|
Gupta S, Mamontov E, Jalarvo N, Stingaciu L, Ohl M. Characteristic length scales of the secondary relaxations in glass-forming glycerol. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:40. [PMID: 27021657 DOI: 10.1140/epje/i2016-16040-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
We investigate the secondary relaxations and their link to the main structural relaxation in glass-forming liquids using glycerol as a model system. We analyze the incoherent neutron scattering signal dependence on the scattering momentum transfer, Q , in order to obtain the characteristic length scale for different secondary relaxations. Such a capability of neutron scattering makes it somewhat unique and highly complementary to the traditional techniques of glass physics, such as light scattering and broadband dielectric spectroscopy, which provide information on the time scale, but not the length scales, of relaxation processes. The choice of suitable neutron scattering techniques depends on the time scale of the relaxation of interest. We use neutron backscattering to identify the characteristic length scale of 0.7 Å for the faster secondary relaxation described in the framework of the mode-coupling theory (MCT). Neutron spin-echo is employed to probe the slower secondary relaxation of the excess wing type at a low temperature ( ∼ 1.13T g . The characteristic length scale for this excess wing dynamics is approximately 4.7 Å. Besides the Q -dependence, the direct coupling of neutron scattering signal to density fluctuation makes this technique indispensable for measuring the length scale of the microscopic relaxation dynamics.
Collapse
Affiliation(s)
- S Gupta
- JCNS-SNS, Biology and Soft-matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory (ORNL), Bethel Valley Road, PO BOX 2008 MS6473, 37831, Oak Ridge, TN, USA.
| | - E Mamontov
- Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory (ORNL), PO BOX 2008 MS6473, 37831-6473, Oak Ridge, TN, USA
| | - N Jalarvo
- JCNS-SNS, Biology and Soft-matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory (ORNL), Bethel Valley Road, PO BOX 2008 MS6473, 37831, Oak Ridge, TN, USA
- Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory (ORNL), PO BOX 2008 MS6473, 37831-6473, Oak Ridge, TN, USA
| | - L Stingaciu
- JCNS-SNS, Biology and Soft-matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory (ORNL), Bethel Valley Road, PO BOX 2008 MS6473, 37831, Oak Ridge, TN, USA
| | - M Ohl
- JCNS-SNS, Biology and Soft-matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory (ORNL), Bethel Valley Road, PO BOX 2008 MS6473, 37831, Oak Ridge, TN, USA
| |
Collapse
|
8
|
Colmenero J. Are polymers standard glass-forming systems? The role of intramolecular barriers on the glass-transition phenomena of glass-forming polymers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:103101. [PMID: 25634723 DOI: 10.1088/0953-8984/27/10/103101] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Traditionally, polymer melts have been considered archetypal glass-formers. This has been mainly due to the fact that these systems can easily be obtained as glasses by cooling from the melt, even at low cooling rates. However, the macromolecules, i.e. the structural units of polymer systems in general, are rather different from the standard molecules. They are long objects ('chains') made by repetition of a given chemical motif (monomer) and have intra-macromolecular barriers that limit their flexibility. The influence of these properties on, for instance, the glass-transition temperature of polymers, is a topic that has been widely studied by the polymer community almost from the early times of polymer science. However, in the framework of the glass-community, the relevant influence of intra-macromolecular barriers and chain connectivity on glass-transition phenomena of polymers has started to be recognized only recently. The aim of this review is to give an overview and to critically revise the results reported on this topic over the last years. From these results, it seems to be evident that there are two different mechanisms involved in the dynamic arrest in glass-forming polymers: (i) the intermolecular packing effects, which dominate the dynamic arrest of low molecular weight glass-forming systems; and (ii) the effect of intra-macromolecular barriers combined with chain connectivity. It has also been shown that the mode coupling theory (MCT) is a suitable theoretical framework to discuss these questions. The values found for polymers for the central MCT parameter--the so-called λ-exponent--are of the order of 0.9, clearly higher than the standard values (λ ≈ 0.7) found in systems where the dynamic arrest is mainly driven by packing effects ('standard' glass-formers). Within the MCT, this is a signature of the presence of two competing mechanisms of dynamic arrest, as it has been observed in short-ranged attractive colloids or two component mixtures with dynamic asymmetry. Moreover, recent MD-simulations of a 'bead-spring' polymer model, but including intra-macromolecular potential of different strengths, confirm that the high λ-values found in polymers are due to the effect of intra-macromolecular barriers. Although there are still open questions, these results allow to conclude that there is a fundamental difference between the nature of the glass transition in polymers and in simple (standard) glass-formers.
Collapse
Affiliation(s)
- J Colmenero
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| |
Collapse
|
9
|
Khairy Y, Alvarez F, Arbe A, Colmenero J. Applicability of mode-coupling theory to polyisobutylene: a molecular dynamics simulation study. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:042302. [PMID: 24229167 DOI: 10.1103/physreve.88.042302] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Indexed: 06/02/2023]
Abstract
The applicability of Mode Coupling Theory (MCT) to the glass-forming polymer polyisobutylene (PIB) has been explored by using fully atomistic molecular dynamics simulations. MCT predictions for the so-called asymptotic regime have been successfully tested on the dynamic structure factor and the self-correlation function of PIB main-chain carbons calculated from the simulated cell. The factorization theorem and the time-temperature superposition principle are satisfied. A consistent fitting procedure of the simulation data to the MCT asymptotic power-laws predicted for the α-relaxation regime has delivered the dynamic exponents of the theory-in particular, the exponent parameter λ-the critical non-ergodicity parameters, and the critical temperature T(c). The obtained values of λ and T(c) agree, within the uncertainties involved in both studies, with those deduced from depolarized light scattering experiments [A. Kisliuk et al., J. Polym. Sci. Part B: Polym. Phys. 38, 2785 (2000)]. Both, λ and T(c)/T(g) values found for PIB are unusually large with respect to those commonly obtained in low molecular weight systems. Moreover, the high T(c)/T(g) value is compatible with a certain correlation of this parameter with the fragility in Angell's classification. Conversely, the value of λ is close to that reported for real polymers, simulated "realistic" polymers and simple polymer models with intramolecular barriers. In the framework of the MCT, such finding should be the signature of two different mechanisms for the glass-transition in real polymers: intermolecular packing and intramolecular barriers combined with chain connectivity.
Collapse
Affiliation(s)
- Y Khairy
- Centro de Física de Materiales (CSIC-UPV/EHU) - Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | | | | | | |
Collapse
|
10
|
Blochowicz T, Schramm S, Lusceac S, Vogel M, Stühn B, Gutfreund P, Frick B. Signature of a type-A glass transition and intrinsic confinement effects in a binary glass-forming system. PHYSICAL REVIEW LETTERS 2012; 109:035702. [PMID: 22861871 DOI: 10.1103/physrevlett.109.035702] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Indexed: 06/01/2023]
Abstract
We study dynamically highly asymmetric binary mixtures comprised of small methyl tetrahydrofuran (MTHF) molecules and polystyrene. Combined use of dielectric spectroscopy, 2H nuclear magnetic resonance, incoherent quasielastic neutron scattering, and depolarized dynamic light scattering allows us to selectively probe the dynamics of the components in a broad dynamic range. It turns out that the mixtures exhibit two glass transitions in a wide concentration range although being fully miscible on a macroscopic scale. In between both glass transition temperatures, the dynamics of the small molecules show strong confinement effects, e.g., a crossover from Vogel-Fulcher to Arrhenius behavior of the time constants. Moreover, the dynamical behavior of small molecules close to the slow matrix is consistent with mode coupling theory predictions for a type-A glass transition, which was expected from recent theoretical and simulation studies in comparable systems.
Collapse
Affiliation(s)
- Thomas Blochowicz
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany.
| | | | | | | | | | | | | |
Collapse
|
11
|
Domschke M, Marsilius M, Blochowicz T, Voigtmann T. Glassy relaxation and excess wing in mode-coupling theory: the dynamic susceptibility of propylene carbonate above and below T(c). PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:031506. [PMID: 22060378 DOI: 10.1103/physreve.84.031506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Indexed: 05/31/2023]
Abstract
We explore the possibility of describing experimental susceptibility spectra of the glass former propylene carbonate with a two-component schematic model of mode-coupling theory (MCT) from above the melting point down to temperatures far below the critical temperature of MCT. By introducing a phenomenological time-dependent hopping rate, the spectra are reproduced in the full frequency and temperature range available. Literature data of dielectric susceptibilities and depolarized Brillouin light-scattering spectra are combined with our measurements of photon correlation spectroscopy to cover up to 18 decades in frequency of spectra for two different dynamical variables. A consistent description of all data sets is obtained by adjusting only a few physically motivated parameters. In particular the excess wing or slow β-relaxation commonly observed in the susceptibility spectra can consistently be modeled as originating from a coupling of the individual experimental probe correlator to the collective density fluctuations.
Collapse
Affiliation(s)
- Markus Domschke
- Institut für Festkörperphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| | | | | | | |
Collapse
|
12
|
Capponi S, Arbe A, Alvarez F, Colmenero J, Frick B, Embs JP. Atomic motions in poly(vinyl methyl ether): A combined study by quasielastic neutron scattering and molecular dynamics simulations in the light of the mode coupling theory. J Chem Phys 2009; 131:204901. [DOI: 10.1063/1.3258857] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Bernabei M, Moreno AJ, Colmenero J. The role of intramolecular barriers on the glass transition of polymers: Computer simulations versus mode coupling theory. J Chem Phys 2009; 131:204502. [DOI: 10.1063/1.3266852] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Zhang R, Schweizer KS. Theory of coupled translational-rotational glassy dynamics in dense fluids of uniaxial particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:011502. [PMID: 19658708 DOI: 10.1103/physreve.80.011502] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Indexed: 05/28/2023]
Abstract
The naïve mode coupling theory (NMCT) for ideal kinetic arrest and the nonlinear Langevin equation theory of activated single-particle barrier hopping dynamics are generalized to treat the coupled center-of-mass (CM) translational and rotational motions of uniaxial hard objects in the glassy fluid regime. The key dynamical variables are the time-dependent displacements of the particle center-of-mass and orientational angle. The NMCT predicts a kinetic arrest diagram with three dynamical states: ergodic fluid, plastic glass, and fully nonergodic double glass, the boundaries of which meet at a "triple point" corresponding to a most difficult to vitrify diatomic of aspect ratio approximately 1.43. The relative roles of rotation and translation in determining ideal kinetic arrest are explored by examining three limits of the theory corresponding to nonrotating, pure rotation, and rotationally ergodic models. The ideal kinetic arrest boundaries represent a crossover to activated dynamics described by two coupled stochastic nonlinear Langevin equations for translational and rotational motions. The fundamental quantity is a dynamic free-energy surface, which for small aspect ratios in the high-volume fraction regime exhibits two saddle points reflecting a two-step activated dynamics where relatively rapid rotational dynamics coexists with slower CM translational motions. For large-enough aspect ratios, the dynamic free-energy surface has one saddle point which corresponds to a system-specific coordinated translation-rotation motion. The entropic barriers as a function of the relative amount of rotation versus translation are determined.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Materials Science and Frederick Seitz Materials Research Laboratory, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801, USA
| | | |
Collapse
|
15
|
Universal behavior of the osmotically compressed cell and its analogy to the colloidal glass transition. Proc Natl Acad Sci U S A 2009; 106:10632-7. [PMID: 19520830 DOI: 10.1073/pnas.0901462106] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanical robustness of the cell under different modes of stress and deformation is essential to its survival and function. Under tension, mechanical rigidity is provided by the cytoskeletal network; with increasing stress, this network stiffens, providing increased resistance to deformation. However, a cell must also resist compression, which will inevitably occur whenever cell volume is decreased during such biologically important processes as anhydrobiosis and apoptosis. Under compression, individual filaments can buckle, thereby reducing the stiffness and weakening the cytoskeletal network. However, the intracellular space is crowded with macromolecules and organelles that can resist compression. A simple picture describing their behavior is that of colloidal particles; colloids exhibit a sharp increase in viscosity with increasing volume fraction, ultimately undergoing a glass transition and becoming a solid. We investigate the consequences of these 2 competing effects and show that as a cell is compressed by hyperosmotic stress it becomes progressively more rigid. Although this stiffening behavior depends somewhat on cell type, starting conditions, molecular motors, and cytoskeletal contributions, its dependence on solid volume fraction is exponential in every instance. This universal behavior suggests that compression-induced weakening of the network is overwhelmed by crowding-induced stiffening of the cytoplasm. We also show that compression dramatically slows intracellular relaxation processes. The increase in stiffness, combined with the slowing of relaxation processes, is reminiscent of a glass transition of colloidal suspensions, but only when comprised of deformable particles. Our work provides a means to probe the physical nature of the cytoplasm under compression, and leads to results that are universal across cell type.
Collapse
|
16
|
Bordat P, Lerbret A, Descamps M, Affouard F. Slow dynamics in glass-forming materials. MOLECULAR SIMULATION 2006. [DOI: 10.1080/08927020600900329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Paul W, Bedrov D, Smith GD. Glass transition in 1,4-polybutadiene: Mode-coupling theory analysis of molecular dynamics simulations using a chemically realistic model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:021501. [PMID: 17025431 DOI: 10.1103/physreve.74.021501] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Indexed: 05/12/2023]
Abstract
We present molecular dynamics simulations of the glass transition in a chemically realistic model of 1,4-polybutadiene (PBD). Around 40 K above the calorimetric glass transition of this polymer the simulations reveal a well-developed two-stage relaxation of all correlation functions. We have analyzed the time-scale separation between vibrational degrees of freedom (subpicosecond dynamics) and the alpha relaxation behavior (nanosecond to microsecond dynamics) using the predictions of mode-coupling theory (MCT). Our value for the mode-coupling critical temperature Tc agrees perfectly with prior experimental estimates for PBD. The predictions of MCT for the scaling behavior of the so-called beta relaxation, the plateau regime separating vibrational dynamics and the alpha relaxation, are well fulfilled. Furthermore, we are able to derive a consistent set of MCT exponents, completely characterizing the scaling behavior of relaxation processes in the vicinity of Tc. For the temperature dependence of the alpha relaxation we find deviations from MCT predictions which we trace to the influence of torsional barriers on the atomic motions.
Collapse
Affiliation(s)
- W Paul
- Institut für Physik, Johannes-Gutenberg-Universität, Staudingerweg 7, D-55099 Mainz, Germany
| | | | | |
Collapse
|
18
|
Blochowicz T, Gainaru C, Medick P, Tschirwitz C, Rössler EA. The dynamic susceptibility in glass forming molecular liquids: The search for universal relaxation patterns II. J Chem Phys 2006; 124:134503. [PMID: 16613457 DOI: 10.1063/1.2178316] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The susceptibility spectra of ten molecular glass formers are completely interpolated by an extension of the generalized gamma distribution of correlation times. The data cover at least 15 decades in frequency and the interpolation includes both alpha peak and excess wing. It is shown that the line shape parameters and the time constant of the alpha relaxation are related to each other. Master curves are identified by a scaling procedure that involves only three parameters, namely, the glass transition temperature T(g), the fragility m, and the excess wing exponent at T(g). This holds independent of whether a further secondary relaxation peak is present or not. Above a crossover temperature T(x) this unique evolution of the line shape parameters breaks down, and a crossover to a simple peak susceptibility without excess wing is observed. Here, the frequency-temperature superposition principle holds in good approximation up to temperatures well above the melting point. It turns out that the crossover coincides with the temperature at which the low-temperature Vogel-Fulcher law starts to fail upon heating. Thus, the so-called Stickel temperature gets a more physical meaning as it marks a qualitative change in the evolution of the susceptibility spectra of glass formers. Moreover, the interrelation of the line shape parameters can explain why the "Nagel scaling" works in some approximation. Our study demonstrates that the excess wing in molecular glass formers is a secondary relaxation, which is linked to the alpha process in a unique way.
Collapse
|
19
|
Moreno AJ, Chong SH, Kob W, Sciortino F. Dynamic arrest in a liquid of symmetric dumbbells: Reorientational hopping for small molecular elongations. J Chem Phys 2005; 123:204505. [PMID: 16351279 DOI: 10.1063/1.2085030] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present extensive equilibrium and out-of-equilibrium molecular-dynamics simulations of a liquid of symmetric dumbbell molecules, for constant packing fraction, as a function of temperature and molecular elongation. We compute diffusion constants as well as odd and even orientational correlators. The notations odd and even refer to the parity of the order l of the corresponding Legendre l polynomial, evaluated for the orientation of the molecular axis relative to its initial position. Rotational degrees of freedom of order l are arrested if, in the long-time limit, the corresponding orientational l correlator does not decay to zero. It is found that for large elongations translational and rotational degrees of freedom freeze at the same temperature. For small elongations only the even rotational degrees of freedom remain coupled to translational motions and arrest at a finite common temperature. On the contrary, the odd rotational degrees of freedom remain ergodic at all investigated temperatures. Hence, in the translationally arrested state, each molecule remains trapped in the cage formed by its neighboring molecules, but is able to perform 180 degrees rotations, which lead to relaxation only for the odd orientational correlators. The temperature dependence of the characteristic time of these residual rotations is well described by an Arrhenius law. Finally, we discuss the evidence in favor of the presence of the type-A transition for the odd rotational degrees of freedom, as predicted by mode-coupling theory for small molecular elongations. This transition is distinct from the type-B transition, associated with the arrest of the translational and even rotational degrees of freedom for small elongations, and with all degrees of freedom for large elongations. Odd orientational correlators are computed for small elongations at very low temperatures in the translationally arrested state. The obtained results suggest that hopping events restore the ergodicity of the odd rotational degrees of freedom at temperatures far below the A transition.
Collapse
Affiliation(s)
- Angel J Moreno
- Dipartimento di Fisica and Istituto Nazionale per la Fisica della Materia (INFM)-Centri di Ricerca e Sviluppo (CRS)-Statistical Mechanics and Complexity (SMC), Universitá di Roma La Sapienza, Piazzale Aldo Moro 2, 00185 Rome, Italy.
| | | | | | | |
Collapse
|
20
|
Affouard F, Cochin E, Danède F, Decressain R, Descamps M, Haeussler W. Onset of slow dynamics in difluorotetrachloroethane glassy crystal. J Chem Phys 2005; 123:084501. [PMID: 16164306 DOI: 10.1063/1.1990111] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Complementary neutron spin-echo and x-ray experiments and molecular-dynamics simulations have been performed on difluorotetrachloroethane (CFCl2-CFCl2) glassy crystal. Static, single-molecule reorientational dynamics and collective dynamics properties are investigated. Our results confirm the strong analogy between molecular liquids and plastic crystals. The orientational disorder is characterized at different temperatures and a change in the nature of rotational dynamics is observed. A careful check of the rotational diffusion model is performed using self-angular correlation functions Cl with high l values and compared to results obtained on molecular liquids composed of A-B dumbbells. Below the crossover temperature at which slow dynamics emerge, we show that some scaling predictions of the mode coupling theory hold and that alpha-relaxation times and nonergodicity parameters are controlled by the nontrivial static correlations.
Collapse
Affiliation(s)
- F Affouard
- Laboratoire de Dynamique et Structure des Matériaux Moléculaires, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8024, Université Lille 1, 59655 Villeneuve d'Ascq Cedex, France.
| | | | | | | | | | | |
Collapse
|
21
|
Ricker M, Schilling R. Microscopic theory of glassy dynamics and glass transition for molecular crystals. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:011508. [PMID: 16089971 DOI: 10.1103/physreve.72.011508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Indexed: 05/03/2023]
Abstract
We derive a microscopic equation of motion for the dynamical orientational correlators of molecular crystals. Our approach is based upon mode coupling theory. Compared to liquids we find four main differences: (i) the memory kernel contains Umklapp processes if the total momentum of two orientational modes is outside the first Brillouin zone, (ii) besides the static two-molecule orientational correlators one also needs the static one-molecule orientational density as an input, where the latter is nontrivial due to the crystal's anisotropy, (iii) the static orientational current density correlator does contribute an anisotropic, inertia-independent part to the memory kernel, and (iv) if the molecules are assumed to be fixed on a rigid lattice, the tensorial orientational correlators and the memory kernel have vanishing l,l(') = 0 components, due to the absence of translational motion. The resulting mode coupling equations are solved for hard ellipsoids of revolution on a rigid sc lattice. Using the static orientational correlators from Percus-Yevick theory we find an ideal glass transition generated due to precursors of orientational order which depend on X(0) and psi, the aspect ratio and packing fraction of the ellipsoids. The glass formation of oblate ellipsoids is enhanced compared to that for prolate ones. For oblate ellipsoids with X(0) < or = 0.7 and prolate ellipsoids with X(0) < or = 4, the critical diagonal nonergodicity parameters in reciprocal space exhibit more or less sharp maxima at the zone center with very small values elsewhere, while for prolate ellipsoids with 2 < or = X(0) < or = 2.5 we have maxima at the zone edge. The off-diagonal nonergodicity parameters are not restricted to positive values and show similar behavior. For 0.7 < or = X(0) < or = 2, no glass transition is found because of too small static orientational correlators. In the glass phase, the nonergodicity parameters show a much more pronounced q dependence.
Collapse
Affiliation(s)
- Michael Ricker
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Germany.
| | | |
Collapse
|
22
|
Yamaguchi T, Chong SH, Hirata F. Mode-coupling analysis of the translational and rotational diffusion of polar liquids; acetonitrile and water. J Mol Liq 2004. [DOI: 10.1016/j.molliq.2003.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Chong SH, Sciortino F. Structural relaxation in supercooled orthoterphenyl. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 69:051202. [PMID: 15244813 DOI: 10.1103/physreve.69.051202] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Indexed: 05/24/2023]
Abstract
We report molecular-dynamics simulation results performed for a model of molecular liquid orthoterphenyl in supercooled states, which we then compare with both experimental data and mode-coupling-theory (MCT) predictions, aiming at a better understanding of structural relaxation in orthoterphenyl. We pay special attention to the wave number dependence of the collective dynamics. It is shown that the simulation results for the model share many features with experimental data for real system, and that MCT captures the simulation results at the semiquantitative level except for intermediate wave numbers connected to the overall size of the molecule. Theoretical results at the intermediate wave number region are found to be improved by taking into account the spatial correlation of the molecule's geometrical center. This supports the idea that unusual dynamical properties at the intermediate wave numbers, reported previously in simulation studies for the model and discernible in coherent neutron-scattering experimental data, are basically due to the coupling of the rotational motion to the geometrical-center dynamics. However, there still remain qualitative as well as quantitative discrepancies between theoretical prediction and corresponding simulation results at the intermediate wave numbers, which call for further theoretical investigation.
Collapse
Affiliation(s)
- S-H Chong
- Dipartimento di Fisica and Istituto Nazionale per la Fisica della Materia, Center for Statistical Mechanics and Complexity, Università di Roma "La Sapienza," Piazzale Aldo Moro 2, I-00185, Roma, Italy
| | | |
Collapse
|
24
|
Ho HM, Cui B, Repel S, Lin B, Rice SA. Influence of a depletion interaction on dynamical heterogeneity in a dense quasi-two-dimensional colloid liquid. J Chem Phys 2004; 121:8627-34. [PMID: 15511189 DOI: 10.1063/1.1800951] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report the results of digital video microscopy studies of the large particle displacements in a quasi-two-dimensional binary mixture of large (L) and small (S) colloid particles with diameter ratio sigma(L)/sigma(S)=4.65, as a function of the large and small colloid particle densities. As in the case of the one-component quasi-two-dimensional colloid system, the binary mixtures exhibit structural and dynamical heterogeneity. The distribution of large particle displacements over the time scale examined provides evidence for (at least) two different mechanisms of motion, one associated with particles in locally ordered regions and the other associated with particles in locally disordered regions. When rhoL*=Npisigma(L) (2)/4A< or =0.35, the addition of small colloid particles leads to a monotonic decrease in the large particle diffusion coefficient with increasing small particle volume fraction. When rhoL* > or =0.35 the addition of small colloid particles to a dense system of large colloid particles at first leads to an increase in the large particle diffusion coefficient, which is then followed by the expected decrease of the large particle diffusion coefficient with increasing small colloid particle volume fraction. The mode coupling theory of the ideal glass transition in three-dimensional systems makes a qualitative prediction that agrees with the initial increase in the large particle diffusion coefficient with increasing small particle density. Nevertheless, because the structural and dynamical heterogeneities of the quasi-two-dimensional colloid liquid occur within the field of equilibrium states, and the fluctuations generate locally ordered domains rather than just disordered regions of higher and lower density, it is suggested that mode coupling theory does not account for all classes of relevant fluctuations in a quasi-two-dimensional liquid.
Collapse
Affiliation(s)
- Hau My Ho
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
25
|
Götze W, Voigtmann T. Effect of composition changes on the structural relaxation of a binary mixture. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2003; 67:021502. [PMID: 12636679 DOI: 10.1103/physreve.67.021502] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2002] [Indexed: 05/24/2023]
Abstract
Within the mode-coupling theory for idealized glass transitions, we study the evolution of structural relaxation in binary mixtures of hard spheres with size ratios delta of the two components varying between 0.5 and 1.0. We find two scenarios for the glassy dynamics. For small size disparity, the mixing yields a slight extension of the glass regime. For larger size disparity, a plasticization effect is obtained, leading to stabilization of the liquid due to mixing. For all delta, a decrease of the elastic moduli at the transition due to mixing is predicted. A stiffening of the glass structure is found as is reflected by the increase of the Debye-Waller factors at the transition points. The critical amplitudes for density fluctuations at small and intermediate wave vectors decrease upon mixing, and thus the universal formulas for the relaxation near the plateau values describe a slowing down of the dynamics upon mixing for the first step of the two-step relaxation scenario. The results explain the qualitative features of mixing effects reported by Williams and van Megen [Phys. Rev. E 64, 041502 (2001)] for dynamical light-scattering measurements on binary mixtures of hard-sphere-like colloids with size ratio delta=0.6.
Collapse
Affiliation(s)
- W Götze
- Physik-Department, Technische Universität München, 85747 Garching, Germany
| | | |
Collapse
|
26
|
Schilling R. Reference-point-independent dynamics of molecular liquids and glasses in the tensorial formalism. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2002; 65:051206. [PMID: 12059544 DOI: 10.1103/physreve.65.051206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2001] [Indexed: 05/23/2023]
Abstract
We apply the tensorial formalism to the dynamics of molecular liquids and glasses. This formalism separates the degrees of freedom into translational and orientational ones. Using the Mori-Zwanzig projection formalism, the equations of motion for the tensorial density correlators S(lmn,l'm'n')(q-->,t) are derived. For this we show how to choose the slow variables such that the resulting Mori-Zwanzig equations are covariant under a change of the reference point of the body fixed frame. We also prove that the memory kernels obtained from mode-coupling theory (MCT) including all approximations preserve the covariance. This covariance makes, e.g., the glass transition point, the two universal scaling laws and particularly the corresponding exponents independent on the reference point and on the mass and moments of inertia, i.e., they only depend on the properties of the potential energy landscape. Finally, we show that the corresponding MCT questions for linear molecules can be obtained from those for arbitrary molecules and that they differ from earlier equations that are not covariant.
Collapse
Affiliation(s)
- Rolf Schilling
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, D-55099 Mainz, Germany.
| |
Collapse
|
27
|
Chong SH, Götze W. Structural relaxation in a system of dumbbell molecules. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2002; 65:051201. [PMID: 12059539 DOI: 10.1103/physreve.65.051201] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2001] [Indexed: 05/23/2023]
Abstract
The interaction-site-density-fluctuation correlators, the dipole-relaxation functions, and the mean-squared displacements of a system of symmetric dumbbells of fused hard spheres are calculated for two representative elongations of the molecules within the mode-coupling theory for the evolution of glassy dynamics. For large elongations, universal relaxation laws for states near the glass transition are valid for parameters and time intervals similar to the ones found for the hard-sphere system. Rotation-translation coupling leads to an enlarged crossover interval for the mean-squared displacement of the constituent atoms between the end of the von Schweidler regime and the beginning of the diffusion process. For small elongations, the superposition principle for the reorientational alpha process is violated for parameters and time intervals of interest for data analysis, and there is a strong breaking of the coupling of the alpha-relaxation scale for the diffusion process with that for representative density fluctuations and for dipole reorientations.
Collapse
Affiliation(s)
- S-H Chong
- Physik-Department, Technische Universität München, 85747 Garching, Germany
| | | |
Collapse
|
28
|
Denny RA, Reichman DR. Molecular hydrodynamic theory of nonresonant Raman spectra in liquids: Third-order spectra. J Chem Phys 2002. [DOI: 10.1063/1.1431278] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|