1
|
Cao Y, Chao Y, Shum HC. Affinity-Controlled Partitioning of Biomolecules at Aqueous Interfaces and Their Bioanalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409362. [PMID: 39171488 DOI: 10.1002/adma.202409362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Indexed: 08/23/2024]
Abstract
All-aqueous phase separation systems play essential roles in bioanalytical and biochemical applications. Compared to conventional oil and organic solvent-based systems, these systems are characterized by their rich bulk and interfacial properties, offering superior biocompatibility. In particular, phase separation in all-aqueous systems facilitates the creation of compartments with specific physicochemical properties, and therefore largely enhances the accessibility of the systems. In addition, the all-aqueous compartments have diverse affinities, with an important property known as partitioning, which can concentrate (bio)molecules toward distinct immiscible phases. This partitioning affinity imparts all-aqueous interfaces with selective permeability, enabling the controlled enrichment of target (bio)molecules. This review introduces the basic principles and applications of partitioning-induced interfacial phenomena in a typical all-aqueous system, namely aqueous two-phase systems (ATPSs); these applications include interfacial chemical reactions, bioprinting, and assembly, as well as bio-sensing and detection. The primary challenges associated with designing all-aqueous phase separation systems and several future directions are also discussed, such as the stabilization of aqueous interfaces, the handling of low-volume samples, and exploration of suitable ATPSs compositions with the efficient protocol.
Collapse
Affiliation(s)
- Yang Cao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Youchuang Chao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, 999077, China
| |
Collapse
|
2
|
Lauber N, Tichacek O, Narayanankutty K, De Martino D, Ruiz-Mirazo K. Collective catalysis under spatial constraints: Phase separation and size-scaling effects on mass action kinetics. Phys Rev E 2023; 108:044410. [PMID: 37978605 DOI: 10.1103/physreve.108.044410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/07/2023] [Indexed: 11/19/2023]
Abstract
Chemical reactions are usually studied under the assumption that both substrates and catalysts are well-mixed (WM) throughout the system. Although this is often applicable to test-tube experimental conditions, it is not realistic in cellular environments, where biomolecules can undergo liquid-liquid phase separation (LLPS) and form condensates, leading to important functional outcomes, including the modulation of catalytic action. Similar processes may also play a role in protocellular systems, like primitive coacervates, or in membrane-assisted prebiotic pathways. Here we explore whether the demixing of catalysts could lead to the formation of microenvironments that influence the kinetics of a linear (multistep) reaction pathway, as compared to a WM system. We implemented a general lattice model to simulate LLPS of a collection of different catalysts and extended it to include diffusion and a sequence of reactions of small substrates. We carried out a quantitative analysis of how the phase separation of the catalysts affects reaction times depending on the affinity between substrates and catalysts, the length of the reaction pathway, the system size, and the degree of homogeneity of the condensate. A key aspect underlying the differences reported between the two scenarios is that the scale invariance observed in the WM system is broken by condensation processes. The main theoretical implications of our results for mean-field chemistry are drawn, extending the mass action kinetics scheme to include substrate initial "hitting times" to reach the catalysts condensate. We finally test this approach by considering open nonlinear conditions, where we successfully predict, through microscopic simulations, that phase separation inhibits chemical oscillatory behavior, providing a possible explanation for the marginal role that this complex dynamic behavior plays in real metabolisms.
Collapse
Affiliation(s)
- Nino Lauber
- Biofisika Institute (CSIC, UPV/EHU), 48940 Leioa, Spain
- Donostia International Physics Center, 20018 Donostia-San Sebastian, Spain
- Department of Philosophy, University of the Basque Country, 20018 Donostia-San Sebastian, Spain
| | - Ondrej Tichacek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Krishnadev Narayanankutty
- Biofisika Institute (CSIC, UPV/EHU), 48940 Leioa, Spain
- Department of Molecular Biology and Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| | - Daniele De Martino
- Biofisika Institute (CSIC, UPV/EHU), 48940 Leioa, Spain
- Ikerbasque Foundation, 48009 Bilbao, Spain
| | - Kepa Ruiz-Mirazo
- Biofisika Institute (CSIC, UPV/EHU), 48940 Leioa, Spain
- Department of Philosophy, University of the Basque Country, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
3
|
Guo W, Kinghorn AB, Zhang Y, Li Q, Poonam AD, Tanner JA, Shum HC. Non-associative phase separation in an evaporating droplet as a model for prebiotic compartmentalization. Nat Commun 2021; 12:3194. [PMID: 34045455 PMCID: PMC8160217 DOI: 10.1038/s41467-021-23410-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
The synthetic pathways of life’s building blocks are envisaged to be through a series of complex prebiotic reactions and processes. However, the strategy to compartmentalize and concentrate biopolymers under prebiotic conditions remains elusive. Liquid-liquid phase separation is a mechanism by which membraneless organelles form inside cells, and has been hypothesized as a potential mechanism for prebiotic compartmentalization. Associative phase separation of oppositely charged species has been shown to partition RNA, but the strongly negative charge exhibited by RNA suggests that RNA-polycation interactions could inhibit RNA folding and its functioning inside the coacervates. Here, we present a prebiotically plausible pathway for non-associative phase separation within an evaporating all-aqueous sessile droplet. We quantitatively investigate the kinetic pathway of phase separation triggered by the non-uniform evaporation rate, together with the Marangoni flow-driven hydrodynamics inside the sessile droplet. With the ability to undergo liquid-liquid phase separation, the drying droplets provide a robust mechanism for formation of prebiotic membraneless compartments, as demonstrated by localization and storage of nucleic acids, in vitro transcription, as well as a three-fold enhancement of ribozyme activity. The compartmentalization mechanism illustrated in this model system is feasible on wet organophilic silica-rich surfaces during early molecular evolution. Prebiotic compartmentalization could prove essential for the evolution of life. Guo et al. show that liquid-liquid separation in an aqueous two-phase system driven by evaporation may already suffice to facilitate chemical processes required for the RNA world hypothesis.
Collapse
Affiliation(s)
- Wei Guo
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China
| | - Andrew B Kinghorn
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China
| | - Yage Zhang
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China
| | - Qingchuan Li
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China.,School of Chemistry & Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, 250100, China
| | - Aditi Dey Poonam
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China
| | - Julian A Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China. .,Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), Hong Kong, China.
| | - Ho Cheung Shum
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China. .,Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), Hong Kong, China.
| |
Collapse
|
4
|
Schnell S, Turner TE. Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 85:235-60. [PMID: 15142746 DOI: 10.1016/j.pbiomolbio.2004.01.012] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We review recent evidence illustrating the fundamental difference between cytoplasmic and test tube biochemical kinetics and thermodynamics, and showing the breakdown of the law of mass action and power-law approximation in in vivo conditions. Simulations of biochemical reactions in non-homogeneous media show that as a result of anomalous diffusion and mixing of the biochemical species, reactions follow a fractal-like kinetics. Consequently, the conventional equations for biochemical pathways fail to describe the reactions in in vivo conditions. We present a modification to fractal-like kinetics following the Zipf-Mandelbrot distribution which will enable the modelling and analysis of biochemical reactions occurring in crowded intracellular environments.
Collapse
Affiliation(s)
- S Schnell
- Centre for Mathematical Biology, Mathematical Institute, Oxford, UK.
| | | |
Collapse
|
5
|
Berry H. Monte carlo simulations of enzyme reactions in two dimensions: fractal kinetics and spatial segregation. Biophys J 2002; 83:1891-901. [PMID: 12324410 PMCID: PMC1302281 DOI: 10.1016/s0006-3495(02)73953-2] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Conventional equations for enzyme kinetics are based on mass-action laws, that may fail in low-dimensional and disordered media such as biological membranes. We present Monte Carlo simulations of an isolated Michaelis-Menten enzyme reaction on two-dimensional lattices with varying obstacle densities, as models of biological membranes. The model predicts that, as a result of anomalous diffusion on these low-dimensional media, the kinetics are of the fractal type. Consequently, the conventional equations for enzyme kinetics fail to describe the reaction. In particular, we show that the quasi-stationary-state assumption can hardly be retained in these conditions. Moreover, the fractal characteristics of the kinetics are increasingly pronounced as obstacle density and initial substrate concentration increase. The simulations indicate that these two influences are mainly additive. Finally, the simulations show pronounced S-P segregation over the lattice at obstacle densities compatible with in vivo conditions. This phenomenon could be a source of spatial self organization in biological membranes.
Collapse
Affiliation(s)
- Hugues Berry
- Equipe de recherche sur les relations matrice extracellulaire-cellules, Université de Cergy-Pontoise, France.
| |
Collapse
|