1
|
Schlungbaum M, Lindner B. Detecting a periodic signal by a population of spiking neurons in the weakly nonlinear response regime. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:108. [PMID: 37930460 PMCID: PMC10627932 DOI: 10.1140/epje/s10189-023-00371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Motivated by experimental observations, we investigate a variant of the cocktail party problem: the detection of a weak periodic stimulus in the presence of fluctuations and another periodic stimulus which is stronger than the periodic signal to be detected. Specifically, we study the response of a population of stochastic leaky integrate-and-fire (LIF) neurons to two periodic signals and focus in particular on the question, whether the presence of one of the stimuli can be detected from the population activity. As a detection criterion, we use a simple threshold-crossing of the population activity over a certain time window. We show by means of the receiver operating characteristics (ROC) that the detectability depends only weakly on the time window of observation but rather strongly on the stimulus amplitude. Counterintuitively, the detection of the weak periodic signal can be facilitated by the presence of a strong periodic input current depending on the frequencies of the two signals and on the dynamical regime in which the neurons operate. Beside numerical simulations of the model, we present an analytical approximation for the ROC curve that is based on the weakly nonlinear response theory for a stochastic LIF neuron.
Collapse
Affiliation(s)
- Maria Schlungbaum
- Physics Department, Humboldt University Berlin, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
| | - Benjamin Lindner
- Physics Department, Humboldt University Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
2
|
Calim A, Palabas T, Uzuntarla M. Stochastic and vibrational resonance in complex networks of neurons. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200236. [PMID: 33840216 DOI: 10.1098/rsta.2020.0236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 05/22/2023]
Abstract
The concept of resonance in nonlinear systems is crucial and traditionally refers to a specific realization of maximum response provoked by a particular external perturbation. Depending on the system and the nature of perturbation, many different resonance types have been identified in various fields of science. A prominent example is in neuroscience where it has been widely accepted that a neural system may exhibit resonances at microscopic, mesoscopic and macroscopic scales and benefit from such resonances in various tasks. In this context, the two well-known forms are stochastic and vibrational resonance phenomena which manifest that detection and propagation of a feeble information signal in neural structures can be enhanced by additional perturbations via these two resonance mechanisms. Given the importance of network architecture in proper functioning of the nervous system, we here present a review of recent studies on stochastic and vibrational resonance phenomena in neuronal media, focusing mainly on their emergence in complex networks of neurons as well as in simple network structures that represent local behaviours of neuron communities. From this perspective, we aim to provide a secure guide by including theoretical and experimental approaches that analyse in detail possible reasons and necessary conditions for the appearance of stochastic resonance and vibrational resonance in neural systems. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 2)'.
Collapse
Affiliation(s)
- Ali Calim
- Department of Biomedical Engineering, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Tugba Palabas
- Department of Biomedical Engineering, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Muhammet Uzuntarla
- Department of Biomedical Engineering, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
3
|
Yonekura S, Kuniyoshi Y. Bodily motion fluctuation improves reaching success rate in a neurophysical agent via geometric-stochastic resonance. PLoS One 2017; 12:e0188298. [PMID: 29220402 PMCID: PMC5722311 DOI: 10.1371/journal.pone.0188298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/24/2017] [Indexed: 11/18/2022] Open
Abstract
Organisms generate a variety of noise types, including neural noise, sensory noise, and noise resulting from fluctuations associated with movement. Sensory and neural noises are known to induce stochastic resonance (SR), which improves information transfer to the subjects control systems, including the brain. As a consequence, sensory and neural noise provide behavioral benefits, such as stabilization of posture and enhancement of feeding efficiency. In contrast, the benefits of fluctuations in the movements of a biological system remain largely unclear. Here, we describe a novel type of noise-induced order (NIO) that is realized by actively exploiting the motion fluctuations of an embodied system. In particular, we describe the theoretical analysis of a feedback-controlled embodied agent system that has a geometric end-effector. Furthermore, through several numerical simulations we demonstrate that the ratio of successful reaches to goal positions and capture of moving targets are improved by the exploitation of motion fluctuations. We report that reaching success rate improvement (RSRI) is based on the interaction of the geometric size of an end-effector, the agents motion fluctuations, and the desired motion frequency. Therefore, RSRI is a geometrically induced SR-like phenomenon. We also report an interesting result obtained through numerical simulations indicating that the agents neural and motion noise must be optimized to match the prey's motion noise in order to maximize the capture rate. Our study provides a new understanding of body motion fluctuations, as they were found to be the active noise sources for a behavioral NIO.
Collapse
|
4
|
Bahar S, Neiman AB, Jung P, Kurths J, Schimansky-Geier L, Showalter K. Introduction to Focus Issue: nonlinear and stochastic physics in biology. CHAOS (WOODBURY, N.Y.) 2011; 21:047501. [PMID: 22225375 DOI: 10.1063/1.3671647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Frank Moss was a leading figure in the study of nonlinear and stochastic processes in biological systems. His work, particularly in the area of stochastic resonance, has been highly influential to the interdisciplinary scientific community. This Focus Issue pays tribute to Moss with articles that describe the most recent advances in the field he helped to create. In this Introduction, we review Moss's seminal scientific contributions and introduce the articles that make up this Focus Issue.
Collapse
Affiliation(s)
- Sonya Bahar
- Department of Physics and Astronomy and Center for Neurodynamics, University of Missouri at St. Louis, St. Louis, Missouri 63121, USA
| | | | | | | | | | | |
Collapse
|
5
|
Engelmann J, Gertz S, Goulet J, Schuh A, von der Emde G. Coding of Stimuli by Ampullary Afferents in Gnathonemus petersii. J Neurophysiol 2010; 104:1955-68. [DOI: 10.1152/jn.00503.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Weakly electric fish use electroreception for both active and passive electrolocation and for electrocommunication. While both active and passive electrolocation systems are prominent in weakly electric Mormyriform fishes, knowledge of their passive electrolocation ability is still scarce. To better estimate the contribution of passive electric sensing to the orientation toward electric stimuli in weakly electric fishes, we investigated frequency tuning applying classical input-output characterization and stimulus reconstruction methods to reveal the encoding capabilities of ampullary receptor afferents. Ampullary receptor afferents were most sensitive (threshold: 40 μV/cm) at low frequencies (<10 Hz) and appear to be tuned to a mix of amplitude and slope of the input signals. The low-frequency tuning was corroborated by behavioral experiments, but behavioral thresholds were one order of magnitude higher. The integration of simultaneously recorded afferents of similar frequency-tuning resulted in strongly enhanced signal-to-noise ratios and increased mutual information rates but did not increase the range of frequencies detectable by the system. Theoretically the neuronal integration of input from receptors experiencing opposite polarities of a stimulus (left and right side of the fish) was shown to enhance encoding of such stimuli, including an increase of bandwidth. Covariance and coherence analysis showed that spiking of ampullary afferents is sufficiently explained by the spike-triggered average, i.e., receptors respond to a single linear feature of the stimulus. Our data support the notion of a division of labor of the active and passive electrosensory systems in weakly electric fishes based on frequency tuning. Future experiments will address the role of central convergence of ampullary input that we expect to lead to higher sensitivity and encoding power of the system.
Collapse
Affiliation(s)
- J. Engelmann
- University of Bonn, Institute for Zoology, Neuroethology—Sensory Ecology, Bonn, Germany
- University of Bielefeld, Faculty of Biology, Active Sensing, Bielefeld, Germany; and
| | - S. Gertz
- University of Bonn, Institute for Zoology, Neuroethology—Sensory Ecology, Bonn, Germany
| | - J. Goulet
- Physik Department, TU München and Bernstein Center for Computational Neuroscience, Garching, Germany
- Radboud University Nijmegen, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - A. Schuh
- University of Bonn, Institute for Zoology, Neuroethology—Sensory Ecology, Bonn, Germany
| | - G. von der Emde
- University of Bonn, Institute for Zoology, Neuroethology—Sensory Ecology, Bonn, Germany
| |
Collapse
|
6
|
Rusconi M, Zaikin A, Marwan N, Kurths J. Effect of stochastic resonance on bone loss in osteopenic conditions. PHYSICAL REVIEW LETTERS 2008; 100:128101. [PMID: 18517912 DOI: 10.1103/physrevlett.100.128101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Indexed: 05/26/2023]
Abstract
We investigate the effect of noise on the remodelling process of the inner spongy part of the trabecular bone. Recently, a new noise-induced phenomenon in bone formation has been reported experimentally. We propose the first conceptual model for this finding, explained by the stochastic resonance effect, and provide a theoretical basis for the development of new countermeasures for bone degeneration in long space flights, which currently has dramatic consequences on return to standard gravity. These results may also be applicable on Earth for patients under osteopenic conditions.
Collapse
Affiliation(s)
- Marco Rusconi
- Institute of Physics, University of Potsdam, 14415 Potsdam, Germany
| | | | | | | |
Collapse
|
7
|
Beato V, Sendiña-Nadal I, Gerdes I, Engel H. Coherence resonance in a chemical excitable system driven by coloured noise. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:381-95. [PMID: 17673411 DOI: 10.1098/rsta.2007.2096] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We investigate how the temporal correlation in excitable systems driven by external noise affects the coherence of the system's response. The coupling to the fluctuating environment is introduced via fluctuations of a bifurcation parameter that controls the local dynamics of the light-sensitive Belousov-Zhabotinsky reaction and of its numerical description, the Oregonator model. Both systems are brought from a highly incoherent regime to a coherent one by an appropriate choice of the correlation time and keeping noise variance constant. This effect has been found both for an Ornstein-Uhlenbeck process and for a dichotomous telegraph signal. In the latter case, we are able to connect the optimal correlation time, for which the system behaviour is most coherent, with a characteristic time scale of the system.
Collapse
Affiliation(s)
- Valentina Beato
- Technische Universität Berlin, Institut für Theoretische Physik, Hardenbergstrasse 36, Berlin 10623, Germany
| | | | | | | |
Collapse
|
8
|
Huber MT, Braun HA. Stimulus-response curves of a neuronal model for noisy subthreshold oscillations and related spike generation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:041929. [PMID: 16711858 DOI: 10.1103/physreve.73.041929] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 02/21/2006] [Indexed: 05/09/2023]
Abstract
We investigate the stimulus-dependent tuning properties of a noisy ionic conductance model for intrinsic subthreshold oscillations in membrane potential and associated spike generation. Upon depolarization by an applied current, the model exhibits subthreshold oscillatory activity with an occasional spike generation when oscillations reach the spike threshold. We consider how the amount of applied current, the noise intensity, variation of maximum conductance values, and scaling to different temperature ranges alter the responses of the model with respect to voltage traces, interspike intervals and their statistics, and the mean spike frequency curves. We demonstrate that subthreshold oscillatory neurons in the presence of noise can sensitively and also selectively be tuned by the stimulus-dependent variation of model parameters.
Collapse
Affiliation(s)
- Martin Tobias Huber
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmannstrasse 8, D-35033 Marburg, Germany
| | | |
Collapse
|
9
|
Bahar S, Moss F. Stochastic resonance and synchronization in the crayfish caudal photoreceptor. Math Biosci 2004; 188:81-97. [PMID: 14766095 DOI: 10.1016/j.mbs.2003.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2002] [Revised: 08/29/2003] [Accepted: 09/16/2003] [Indexed: 11/23/2022]
Abstract
Stochastic resonance is the process by which noise added to a weak external stimulus can enhance encoding efficiency in the sensory periphery and thence in the central nervous system. Stochastic synchronization is the process by which noisy phase synchronization of two periodic (or aperiodic) signals can occur. Together with a brief review of both concepts, we illustrate their applications to the encoding of weak external hydrodynamic signals in the mechanosensory system of the crayfish.
Collapse
Affiliation(s)
- Sonya Bahar
- Department of Neurological Surgery, Weill-Cornell Medical College, 525 East 68th Street, Box #99, New York Presbyterian Hospital, New York, NY 10021, USA.
| | | |
Collapse
|
10
|
Zhangcai L, Youguo Q. Stochastic resonance driven by time-modulated neurotransmitter random point trains. PHYSICAL REVIEW LETTERS 2003; 91:208103. [PMID: 14683401 DOI: 10.1103/physrevlett.91.208103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Indexed: 05/24/2023]
Abstract
Information transmitting by temporally modulated random point trains, such as neurotransmitter quanta and spikes, which are neither additive signal and noise nor diffusion approximated additive signal and noise, is studied. We demonstrate that tuning the input train's average rate can optimize the response of an integrate-and-fire model neuron to a signal modulated point train. The characteristics of this phenomenon and its biological significance are discussed.
Collapse
Affiliation(s)
- Long Zhangcai
- Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | | |
Collapse
|
11
|
Huber MT, Braun HA, Krieg JC. On episode sensitization in recurrent affective disorders: the role of noise. Neuropsychopharmacology 2003; 28 Suppl 1:S13-20. [PMID: 12827139 DOI: 10.1038/sj.npp.1300141] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Episode sensitization is postulated as a key mechanism underlying the long-term course of recurrent affective disorders. Functionally, episode sensitization represents positive feedback between a disease process and its disease episodes resulting in a transition from externally triggered to autonomous episode generation. Recently, we introduced computational approaches to elucidate the functional properties of sensitization. Specifically, we considered the dynamics of episode sensitization with a simple computational model. The present study extends this work by investigating how naturally occurring, internal or external, random influences ("noise") affect episode sensitization. Our simulations demonstrate that actions of noise differ qualitatively in dependence on both the model's activity state as well as the noise intensity. Thereby induction as well as suppression of sensitization can be observed. Most interestingly, externally triggered sensitization development can be minimized by tuning the noise to intermediate intensities. Our findings contribute to the conceptual understanding of the clinical kindling model for affective disorders and also indicate interesting roles for random fluctuations in kindling and sensitization at the neuronal level.
Collapse
Affiliation(s)
- Martin Tobias Huber
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmannstrasse 8, D-35033 Marburg, Germany.
| | | | | |
Collapse
|
12
|
Freund JA, Schimansky-Geier L, Hänggi P. Frequency and phase synchronization in stochastic systems. CHAOS (WOODBURY, N.Y.) 2003; 13:225-238. [PMID: 12675429 DOI: 10.1063/1.1500497] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The phenomenon of frequency and phase synchronization in stochastic systems requires a revision of concepts originally phrased in the context of purely deterministic systems. Various definitions of an instantaneous phase are presented and compared with each other with special attention paid to their robustness with respect to noise. We review the results of an analytic approach describing noise-induced phase synchronization in a thermal two-state system. In this context exact expressions for the mean frequency and the phase diffusivity are obtained that together determine the average length of locking episodes. A recently proposed method to quantify frequency synchronization in noisy potential systems is presented and exemplified by applying it to the periodically driven noisy harmonic oscillator. Since this method is based on a threshold crossing rate pioneered by Rice the related phase velocity is termed the Rice frequency. Finally, we discuss the relation between the phenomenon of stochastic resonance and noise-enhanced phase coherence by applying the developed concepts to the periodically driven bistable Kramers oscillator.
Collapse
Affiliation(s)
- Jan A Freund
- Institut für Physik, Humboldt-Universität zu Berlin, Invalidenstr. 110, D-10115 Berlin, Germany.
| | | | | |
Collapse
|
13
|
Callenbach L, Hänggi P, Linz SJ, Freund JA, Schimansky-Geier L. Oscillatory systems driven by noise: frequency and phase synchronization. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2002; 65:051110. [PMID: 12059532 DOI: 10.1103/physreve.65.051110] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2001] [Indexed: 05/23/2023]
Abstract
The phenomenon of effective phase synchronization in stochastic oscillatory systems can be quantified by an average frequency and a phase diffusion coefficient. A different approach to compute the noise-averaged frequency is put forward. The method is based on a threshold crossing rate pioneered by Rice. After the introduction of the Rice frequency for noisy systems we compare this quantifier with those obtained in the context of other phase concepts, such as the natural and the Hilbert phase, respectively. It is demonstrated that the average Rice frequency <omega>R typically supersedes the Hilbert frequency <omega>H, i.e. <omega>R > or = <omega>H. We investigate next the Rice frequency for the harmonic and the damped, bistable Kramers oscillator, both without and with external periodic driving. Exact and approximative analytic results are corroborated by numerical simulation results. Our results complement and extend previous findings for the case of noise-driven inertial systems.
Collapse
Affiliation(s)
- Lars Callenbach
- Institut für Physik, Universität Augsburg, Universitätsstrasse 1, D-86135 Augsburg, Germany
| | | | | | | | | |
Collapse
|
14
|
Neiman AB, Russell DF. Synchronization of noise-induced bursts in noncoupled sensory neurons. PHYSICAL REVIEW LETTERS 2002; 88:138103. [PMID: 11955129 DOI: 10.1103/physrevlett.88.138103] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2001] [Revised: 01/03/2002] [Indexed: 05/23/2023]
Abstract
We report experimental observation of phase synchronization in an array of nonidentical noncoupled noisy neuronal oscillators, due to stimulation with external noise. The synchronization derives from a noise-induced qualitative change in the firing pattern of single neurons, which changes from a quasiperiodic to a bursting mode. We show that at a certain noise intensity the onsets of bursts in different neurons become synchronized, even though the number of spikes inside the bursts may vary for different neurons. We demonstrate this effect both experimentally for the electroreceptor afferents of paddlefish, and numerically for a canonical phase model, and characterize it in terms of stochastic synchronization.
Collapse
Affiliation(s)
- Alexander B Neiman
- Center for Neurodynamics, University of Missouri at St. Louis, St. Louis, Missouri 63121, USA
| | | |
Collapse
|
15
|
Freund JA, Schimansky-Geier L, Beisner B, Neiman A, Russell DF, Yakusheva T, Moss F. Behavioral stochastic resonance: how the noise from a Daphnia swarm enhances individual prey capture by juvenile paddlefish. J Theor Biol 2002; 214:71-83. [PMID: 11786033 DOI: 10.1006/jtbi.2001.2445] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Zooplankton emit weak electric fields into the surrounding water that originate from their own muscular activities associated with swimming and feeding. Juvenile paddlefish prey upon single zooplankton by detecting and tracking these weak electric signatures. The passive electric sense in this fish is provided by an elaborate array of electroreceptors, Ampullae of Lorenzini, spread over the surface of an elongated rostrum. We have previously shown that the fish use stochastic resonance to enhance prey capture near the detection threshold of their sensory system. However, stochastic resonance requires an external source of electrical noise in order to function. A swarm of plankton, for example Daphnia, can provide the required noise. We hypothesize that juvenile paddlefish can detect and attack single Daphnia as outliers in the vicinity of the swarm by using noise from the swarm itself. From the power spectral density of the noise plus the weak signal from a single Daphnia, we calculate the signal-to-noise ratio, Fisher information and discriminability at the surface of the paddlefish's rostrum. The results predict a specific attack pattern for the paddlefish that appears to be experimentally testable.
Collapse
Affiliation(s)
- Jan A Freund
- Institut für Physik, Humboldt-Universität zu Berlin, Invalidenstr. 110, Berlin, D-10115, Germany
| | | | | | | | | | | | | |
Collapse
|