• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4696821)   Today's Articles (5036)
For: Osipov GV, Kurths J. Regular and chaotic phase synchronization of coupled circle maps. Phys Rev E Stat Nonlin Soft Matter Phys 2002;65:016216. [PMID: 11800777 DOI: 10.1103/physreve.65.016216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2001] [Revised: 09/27/2001] [Indexed: 05/23/2023]
Number Cited by Other Article(s)
1
Gong CC, Toenjes R, Pikovsky A. Coupled Möbius maps as a tool to model Kuramoto phase synchronization. Phys Rev E 2020;102:022206. [PMID: 32942495 DOI: 10.1103/physreve.102.022206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/13/2020] [Indexed: 11/07/2022]
2
Banerjee T, Paul B, Sarkar BC. Spatiotemporal dynamics of a digital phase-locked loop based coupled map lattice system. CHAOS (WOODBURY, N.Y.) 2014;24:013116. [PMID: 24697378 DOI: 10.1063/1.4863859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
3
Postnov DE, Sosnovtseva OV, Scherbakov P, Mosekilde E. Multimode dynamics in a network with resource mediated coupling. CHAOS (WOODBURY, N.Y.) 2008;18:015114. [PMID: 18377095 DOI: 10.1063/1.2805194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
4
Nesse WH, Clark GA, Bressloff PC. Spike patterning of a stochastic phase model neuron given periodic inhibition. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007;75:031912. [PMID: 17500731 DOI: 10.1103/physreve.75.031912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Indexed: 05/15/2023]
5
Schelter B, Winterhalder M, Dahlhaus R, Kurths J, Timmer J. Partial phase synchronization for multivariate synchronizing systems. PHYSICAL REVIEW LETTERS 2006;96:208103. [PMID: 16803212 DOI: 10.1103/physrevlett.96.208103] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Indexed: 05/10/2023]
6
Jalan S, Amritkar RE, Hu CK. Synchronized clusters in coupled map networks. I. Numerical studies. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005;72:016211. [PMID: 16090070 DOI: 10.1103/physreve.72.016211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Indexed: 05/03/2023]
7
Osipov GV, Ivanchenko MV, Kurths J, Hu B. Synchronized chaotic intermittent and spiking behavior in coupled map chains. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005;71:056209. [PMID: 16089636 DOI: 10.1103/physreve.71.056209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 03/02/2005] [Indexed: 05/03/2023]
8
Lind PG, Corte-Real J, Gallas JAC. Inducing coherence in networks of bistable maps by varying the interaction range. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004;69:026209. [PMID: 14995550 DOI: 10.1103/physreve.69.026209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Indexed: 05/24/2023]
9
Osipov GV, Hu B, Zhou C, Ivanchenko MV, Kurths J. Three types of transitions to phase synchronization in coupled chaotic oscillators. PHYSICAL REVIEW LETTERS 2003;91:024101. [PMID: 12906481 DOI: 10.1103/physrevlett.91.024101] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2003] [Indexed: 05/24/2023]
10
Hu B, Osipov GV, Yang HL, Kurths J. Oscillatory and rotatory synchronization of chaotic autonomous phase systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2003;67:066216. [PMID: 16241335 DOI: 10.1103/physreve.67.066216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2002] [Revised: 01/23/2003] [Indexed: 05/04/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA