1
|
Jung W, Chen TY, Santiago AG, Chen P. Memory effects of transcription regulator-DNA interactions in bacteria. Proc Natl Acad Sci U S A 2024; 121:e2407647121. [PMID: 39361642 PMCID: PMC11474097 DOI: 10.1073/pnas.2407647121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/26/2024] [Indexed: 10/05/2024] Open
Abstract
Memory effect refers to the phenomenon where past events influence a system's current and future states or behaviors. In biology, memory effects often arise from intra- or intermolecular interactions, leading to temporally correlated behaviors. Single-molecule studies have shown that enzymes and DNA-binding proteins can exhibit time-correlated behaviors of their activity. While memory effects are well documented and studied in vitro, no such examples exist in cells to our knowledge. Combining single-molecule tracking (SMT) and single-cell protein quantitation, we find in living Escherichia coli cells distinct temporal correlations in the binding/unbinding events on DNA by MerR- and Fur-family metalloregulators, manifesting as memory effects with timescales of ~1 s. These memory effects persist irrespective of the type of the metalloregulators or their metallation states. Moreover, these temporal correlations of metalloregulator-DNA interactions are associated with spatial confinements of the metalloregulators near their DNA binding sites, suggesting microdomains of ~100 nm in size that possibly result from the spatial organizations of the bacterial chromosome without the involvement of membranes. These microdomains likely facilitate repeated binding events, enhancing regulator-DNA contact frequency and potentially gene regulation efficiency. These findings provide unique insights into the spatiotemporal dynamics of protein-DNA interactions in bacterial cells, introducing the concept of microdomains as a crucial player in memory effect-driven gene regulation.
Collapse
Affiliation(s)
- Won Jung
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Tai-Yen Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
- Department of Chemistry, University of Houston, Houston, TX77204
| | - Ace George Santiago
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
- 10x Genomics, Pleasanton, CA94588
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| |
Collapse
|
2
|
Ben-Abu Y, Tucker SJ, Contera S. Transcending Markov: non-Markovian rate processes of thermosensitive TRP ion channels. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230984. [PMID: 37621668 PMCID: PMC10445021 DOI: 10.1098/rsos.230984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023]
Abstract
The Markov state model (MSM) is a popular theoretical tool for describing the hierarchy of time scales involved in the function of many proteins especially ion channel gating. An MSM is a particular case of the general non-Markovian model, where the rate of transition from one state to another does not depend on the history of state occupancy within the system, i.e. it only includes reversible, non-dissipative processes. However, an MSM requires knowledge of the precise conformational state of the protein and is not predictive when those details are not known. In the case of ion channels, this simple description fails in real (non-equilibrium) situations, for example when local temperature changes, or when energy losses occur during channel gating. Here, we show it is possible to use non-Markovian equations (i.e. offer a general description that includes the MSM as a particular case) to develop a relatively simple analytical model that describes the non-equilibrium behaviour of the temperature-sensitive transient receptor potential (TRP) ion channels, TRPV1 and TRPM8. This model accurately predicts asymmetrical opening and closing rates, infinite processes and the creation of new states, as well as the effect of temperature changes throughout the process. This approach therefore overcomes the limitations of the MSM and allows us to go beyond a mere phenomenological description of the dynamics of ion channel gating towards a better understanding of the physics underlying these processes.
Collapse
Affiliation(s)
- Yuval Ben-Abu
- Physics Unit, Sapir Academic College, Sderot, Hof Ashkelon 79165, Israel
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Sonia Contera
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| |
Collapse
|
3
|
Silva MP, Rodrigues CG, Varanda WA, Nogueira RA. Memory in Ion Channel Kinetics. Acta Biotheor 2021; 69:697-722. [PMID: 34043104 DOI: 10.1007/s10441-021-09415-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/20/2021] [Indexed: 12/21/2022]
Abstract
Ion channels are transport proteins present in the lipid bilayers of biological membranes. They are involved in many physiological processes, such as the generation of nerve impulses, hormonal secretion, and heartbeat. Conformational changes in the ion channel-forming protein allow the opening or closing of pores to control the ionic flux through the cell membranes. The opening and closing of the ion channel have been classically treated as a random kinetic process, known as a Markov process. Here the time the channel remains in a given state is assumed to be independent of the condition it had in the previous state. More recently, however, several studies have shown that this process is not random but a deterministic one, where both the open and closed dwell-times and the ionic current flowing through the channel are history-dependent. This property is called long memory or long-range correlation. However, there is still much controversy regarding how this memory originates, which region of the channel is responsible for this property, and which models could best reproduce the memory effect. In this article, we provide a review of what is, where it is, its possible origin, and the mathematical methods used to analyze the long-term memory present in the kinetic process of ion channels.
Collapse
Affiliation(s)
- M P Silva
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | - C G Rodrigues
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - W A Varanda
- Department of Physiology-Faculty of Medicine of Ribeirão Preto, University of São Paulo (Retired), Ribeirão Preto, São Paulo, Brazil
| | - R A Nogueira
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
4
|
Wawrzkiewicz-Jałowiecka A, Trybek P, Borys P, Dworakowska B, Machura Ł, Bednarczyk P. Differences in Gating Dynamics of BK Channels in Cellular and Mitochondrial Membranes from Human Glioblastoma Cells Unraveled by Short- and Long-Range Correlations Analysis. Cells 2020; 9:E2305. [PMID: 33076484 PMCID: PMC7602617 DOI: 10.3390/cells9102305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/04/2023] Open
Abstract
The large-conductance voltage- and Ca2+-activated K+ channels (BK) are encoded in humans by the Kcnma1 gene. Nevertheless, BK channel isoforms in different locations can exhibit functional heterogeneity mainly due to the alternative splicing during the Kcnma1 gene transcription. Here, we would like to examine the existence of dynamic diversity of BK channels from the inner mitochondrial and cellular membrane from human glioblastoma (U-87 MG). Not only the standard characteristics of the spontaneous switching between the functional states of the channel is discussed, but we put a special emphasis on the presence and strength of correlations within the signal describing the single-channel activity. The considered short- and long-range memory effects are here analyzed as they can be interpreted in terms of the complexity of the switching mechanism between stable conformational states of the channel. We calculate the dependencies of mean dwell-times of (conducting/non-conducting) states on the duration of the previous state, Hurst exponents by the rescaled range R/S method and detrended fluctuation analysis (DFA), and use the multifractal extension of the DFA (MFDFA) for the series describing single-channel activity. The obtained results unraveled statistically significant diversity in gating machinery between the mitochondrial and cellular BK channels.
Collapse
Affiliation(s)
- Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Paulina Trybek
- Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzow, Poland;
| | - Przemysław Borys
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Beata Dworakowska
- Institute of Biology, Department of Physics and Biophysics, Warsaw University of Life Sciences—SGGW, 02-787 Warszawa, Poland; (B.D.); (P.B.)
| | - Łukasz Machura
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzow, Poland;
| | - Piotr Bednarczyk
- Institute of Biology, Department of Physics and Biophysics, Warsaw University of Life Sciences—SGGW, 02-787 Warszawa, Poland; (B.D.); (P.B.)
| |
Collapse
|
5
|
Wawrzkiewicz-Jałowiecka A, Trybek P, Dworakowska B, Machura Ł. Multifractal Properties of BK Channel Currents in Human Glioblastoma Cells. J Phys Chem B 2020; 124:2382-2391. [PMID: 32129626 PMCID: PMC7497650 DOI: 10.1021/acs.jpcb.0c00397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Indexed: 12/12/2022]
Abstract
Potassium channels play an important physiological role in glioma cells. In particular, voltage- and Ca2+-activated large-conductance BK channels (gBK in gliomas) are involved in the intensive growth and extensive migrating behavior of the mentioned tumor cells; thus, they may be considered as a drug target for the therapeutic treatment of glioblastoma. To enable appropriate drug design, molecular mechanisms of gBK channel activation by diverse stimuli should be unraveled as well as the way that the specific conformational states of the channel relate to its functional properties (conducting/nonconducting). There is an open debate about the actual mechanism of BK channel gating, including the question of how the channel proteins undergo a range of conformational transitions when they flicker between nonconducting (functionally closed) and conducting (open) states. The details of channel conformational diffusion ought to have its representation in the properties of the experimental signal that describes the ion-channel activity. Nonlinear methods of analysis of experimental nonstationary series can be useful for observing the changes in the number of channel substates available from geometrical and energetic points of view at given external conditions. In this work, we analyze whether the multifractal properties of the activity of glioblastoma BK channels depend on membrane potential, and which states, conducting or nonconducting, affect the total signal to a larger extent. With this aim, we carried out patch-clamp experiments at different levels of membrane hyper- and depolarization. The obtained time series of single channel currents were analyzed using the multifractal detrended fluctuation analysis (MFDFA) method in a standard form and incorporating focus-based multifractal (FMF) formalism. Thus, we show the applicability of a modified MFDFA technique in the analysis of an experimental patch-clamp time series. The obtained results suggest that membrane potential strongly affects the conformational space of the gBK channel proteins and the considered process has nonlinear multifractal characteristics. These properties are the inherent features of the analyzed signals due to the fact that the main tendencies vanish after shuffling the data.
Collapse
Affiliation(s)
- Agata Wawrzkiewicz-Jałowiecka
- Department
of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Gliwice 44-100, Poland
| | - Paulina Trybek
- Institute
of Physics, University of Silesia in Katowice, Katowice 40-007, Poland
| | - Beata Dworakowska
- Institute
of Biology, Department of Physics and Biophysics, Warsaw University of Life Sciences—SGGW, Warszawa 02-787, Poland
| | - Łukasz Machura
- Institute
of Physics, University of Silesia in Katowice, Katowice 40-007, Poland
| |
Collapse
|
6
|
Long-Range Correlations and Characterization of Financial and Volcanic Time Series. MATHEMATICS 2020. [DOI: 10.3390/math8030441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we use the Diffusion Entropy Analysis (DEA) to analyze and detect the scaling properties of time series from both emerging and well established markets as well as volcanic eruptions recorded by a seismic station, both financial and volcanic time series data have high frequencies. The objective is to determine whether they follow a Gaussian or Lévy distribution, as well as establish the existence of long-range correlations in these time series. The results obtained from the DEA technique are compared with the Hurst R/S analysis and Detrended Fluctuation Analysis (DFA) methodologies. We conclude that these methodologies are effective in classifying the high frequency financial indices and volcanic eruption data—the financial time series can be characterized by a Lévy walk while the volcanic time series is characterized by a Lévy flight.
Collapse
|
7
|
Miśkiewicz J, Trela Z, Burdach Z, Karcz W, Balińska-Miśkiewicz W. Long range correlations of the ion current in SV channels. Met3PbCl influence study. PLoS One 2020; 15:e0229433. [PMID: 32126096 PMCID: PMC7053716 DOI: 10.1371/journal.pone.0229433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 02/06/2020] [Indexed: 11/19/2022] Open
Abstract
The long-range correlations within the current signal time series of the Beta vulgaris vacuolar membrane under the influence of organolead compound (Met3PbCl) are investigated. The current time series is transformed into a dwell time series. Then the rescaled range and detrended fluctuations analyses are used. It is shown that the presence of Met3PbCl in the solution decreases the mean value of the Hurst exponent and therefore influences the long-range correlations in ionic channel current. This observation is statistically significant. An ion channel model is built and the experimental results reconstructed and analysed.
Collapse
Affiliation(s)
- Janusz Miśkiewicz
- Institute of Theoretical Physics, University of Wrocław, Wrocław, Poland
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Zenon Trela
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Zbigniew Burdach
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Waldemar Karcz
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Wanda Balińska-Miśkiewicz
- 1st Department and Clinic of Paediatrics, Allergology and Cardiology, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
8
|
Huang Y, Qu J, Li X, Wei F, Zhong J, Wu Y, Cai M, Gao X, Pearson JE, Shuai J. Anti-cross-correlation between the adjacent open and closed durations of Markovian channels. Phys Rev E 2020; 101:012418. [PMID: 32069561 DOI: 10.1103/physreve.101.012418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Indexed: 11/07/2022]
Abstract
We show that a non-Markovian behavior can appear in a type of Markovian multimeric channel. Such a channel consists of N independent subunits, and each subunit has at least one open state and more than one closed state. Suppose the open state of the channel is defined as M out of N subunits in the open state with N>M>0. We show that, although the gating dynamics for each subunit between open and closed states is Markovian, the channel can show a memory behavior of weak anti-cross-correlation between the adjacent open and closed durations. Our study indicates that a non-Markovian binary time series can be obtained from a linear superposition of some independent channel subunits with Markovian gating dynamics.
Collapse
Affiliation(s)
- Yandong Huang
- College of Computer Engineering, Jimei University, Xiamen 361021, China
| | - Jing Qu
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Xiang Li
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Fang Wei
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Jinjin Zhong
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Yuning Wu
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Meichun Cai
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Xuejuan Gao
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - John E Pearson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen 361005, China.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361102, China.,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, China
| |
Collapse
|
9
|
Comlekoglu T, Weinberg SH. Memory in a fractional-order cardiomyocyte model alters properties of alternans and spontaneous activity. CHAOS (WOODBURY, N.Y.) 2017; 27:093904. [PMID: 28964143 DOI: 10.1063/1.4999351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cardiac memory is the dependence of electrical activity on the prior history of one or more system state variables, including transmembrane potential (Vm), ionic current gating, and ion concentrations. While prior work has represented memory either phenomenologically or with biophysical detail, in this study, we consider an intermediate approach of a minimal three-variable cardiomyocyte model, modified with fractional-order dynamics, i.e., a differential equation of order between 0 and 1, to account for history-dependence. Memory is represented via both capacitive memory, due to fractional-order Vm dynamics, that arises due to non-ideal behavior of membrane capacitance; and ionic current gating memory, due to fractional-order gating variable dynamics, that arises due to gating history-dependence. We perform simulations for varying Vm and gating variable fractional-orders and pacing cycle length and measure action potential duration (APD) and incidence of alternans, loss of capture, and spontaneous activity. In the absence of ionic current gating memory, we find that capacitive memory, i.e., decreased Vm fractional-order, typically shortens APD, suppresses alternans, and decreases the minimum cycle length (MCL) for loss of capture. However, in the presence of ionic current gating memory, capacitive memory can prolong APD, promote alternans, and increase MCL. Further, we find that reduced Vm fractional order (typically less than 0.75) can drive phase 4 depolarizations that promote spontaneous activity. Collectively, our results demonstrate that memory reproduced by a fractional-order model can play a role in alternans formation and pacemaking, and in general, can greatly increase the range of electrophysiological characteristics exhibited by a minimal model.
Collapse
Affiliation(s)
- T Comlekoglu
- Virginia Commonwealth University, 401 West Main Street, Richmond, Virginia 23284, USA
| | - S H Weinberg
- Virginia Commonwealth University, 401 West Main Street, Richmond, Virginia 23284, USA
| |
Collapse
|
10
|
Gupta R. Phosphorylation of rat brain purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal kinase-3 modifies open-channel noise. Biochem Biophys Res Commun 2017; 490:1221-1225. [PMID: 28676395 DOI: 10.1016/j.bbrc.2017.06.194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 10/19/2022]
Abstract
The drift kinetic energy of ionic flow through single ion channels cause vibrations of the pore walls which are observed as open-state current fluctuations (open-channel noise) during single-channel recordings. Vibration of the pore wall leads to transitions among different conformational sub-states of the channel protein in the open-state. Open-channel noise analysis can provide important information about the different conformational sub-state transitions and how biochemical modifications of ion channels would affect their transport properties. It has been shown that c-Jun N-terminal kinase-3 (JNK3) becomes activated by phosphorylation in various neurodegenerative diseases and phosphorylates outer mitochondrion associated proteins leading to neuronal apoptosis. In our earlier work, JNK3 has been reported to phosphorylate purified rat brain mitochondrial voltage-dependent anion channel (VDAC) in vitro and modify its conductance and opening probability. In this article we have compared the open-state noise profile of the native and the JNK3 phosphorylated VDAC using Power Spectral Density vs frequency plots. Power spectral density analysis of open-state noise indicated power law with average slope value α ≈1 for native VDAC at both positive and negative voltage whereas average α value < 0.5 for JNK3 phosphorylated VDAC at both positive and negative voltage. It is proposed that 1/f1 power law in native VDAC open-state noise arises due to coupling of ionic transport and conformational sub-states transitions in open-state and this coupling is perturbed as a result of channel phosphorylation.
Collapse
Affiliation(s)
- Rajeev Gupta
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
11
|
|
12
|
Weinberg SH. Membrane capacitive memory alters spiking in neurons described by the fractional-order Hodgkin-Huxley model. PLoS One 2015; 10:e0126629. [PMID: 25970534 PMCID: PMC4430543 DOI: 10.1371/journal.pone.0126629] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/04/2015] [Indexed: 12/17/2022] Open
Abstract
Excitable cells and cell membranes are often modeled by the simple yet elegant parallel resistor-capacitor circuit. However, studies have shown that the passive properties of membranes may be more appropriately modeled with a non-ideal capacitor, in which the current-voltage relationship is given by a fractional-order derivative. Fractional-order membrane potential dynamics introduce capacitive memory effects, i.e., dynamics are influenced by a weighted sum of the membrane potential prior history. However, it is not clear to what extent fractional-order dynamics may alter the properties of active excitable cells. In this study, we investigate the spiking properties of the neuronal membrane patch, nerve axon, and neural networks described by the fractional-order Hodgkin-Huxley neuron model. We find that in the membrane patch model, as fractional-order decreases, i.e., a greater influence of membrane potential memory, peak sodium and potassium currents are altered, and spike frequency and amplitude are generally reduced. In the nerve axon, the velocity of spike propagation increases as fractional-order decreases, while in a neural network, electrical activity is more likely to cease for smaller fractional-order. Importantly, we demonstrate that the modulation of the peak ionic currents that occurs for reduced fractional-order alone fails to reproduce many of the key alterations in spiking properties, suggesting that membrane capacitive memory and fractional-order membrane potential dynamics are important and necessary to reproduce neuronal electrical activity.
Collapse
Affiliation(s)
- Seth H. Weinberg
- Virginia Modeling, Analysis and Simulation Center, Old Dominion University, 1030 University Boulevard, Suffolk, Virginia, USA
- * E-mail:
| |
Collapse
|
13
|
Pressé S, Peterson J, Lee J, Elms P, MacCallum JL, Marqusee S, Bustamante C, Dill K. Single molecule conformational memory extraction: p5ab RNA hairpin. J Phys Chem B 2014; 118:6597-603. [PMID: 24898871 PMCID: PMC4064692 DOI: 10.1021/jp500611f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Extracting kinetic models from single molecule data is an important route to mechanistic insight in biophysics, chemistry, and biology. Data collected from force spectroscopy can probe discrete hops of a single molecule between different conformational states. Model extraction from such data is a challenging inverse problem because single molecule data are noisy and rich in structure. Standard modeling methods normally assume (i) a prespecified number of discrete states and (ii) that transitions between states are Markovian. The data set is then fit to this predetermined model to find a handful of rates describing the transitions between states. We show that it is unnecessary to assume either (i) or (ii) and focus our analysis on the zipping/unzipping transitions of an RNA hairpin. The key is in starting with a very broad class of non-Markov models in order to let the data guide us toward the best model from this very broad class. Our method suggests that there exists a folding intermediate for the P5ab RNA hairpin whose zipping/unzipping is monitored by force spectroscopy experiments. This intermediate would not have been resolved if a Markov model had been assumed from the onset. We compare the merits of our method with those of others.
Collapse
Affiliation(s)
- Steve Pressé
- Department of Physics, Indiana University-Purdue University , Indianapolis, Indiana 46202, United States
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Single-molecule data often come in the form of stochastic time trajectories. A key question is how to extract an underlying kinetic model from the data. A traditional approach is to assume some discrete state model, that is, a model topology, and to assume that transitions between states are Markovian. The transition rates are then selected according to which ones best fit the data. However, in experiments, each apparent state can be a broad ensemble of states or can be hiding multiple interconverting states. Here, we describe a more general approach called the non-Markov memory kernel (NMMK) method. The idea is to begin with a very broad class of non-Markov models and to let the data directly select for the best possible model. To do so, we adapt an image reconstruction approach that is grounded in maximum entropy. The NMMK method is not limited to discrete state models for the data; it yields a unique model given the data, it gives error bars for the model, and it does not assume Markov dynamics. Furthermore, NMMK is less wasteful of data by letting the entire data set determine the model. When the data warrants, the NMMK gives a memory kernel that is Markovian. We highlight, by numerical example, how conformational memory extracted using this method can be translated into useful mechanistic insight.
Collapse
Affiliation(s)
- Steve Pressé
- Department of Physics, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
15
|
Nanopore sensors: From hybrid to abiotic systems. Biosens Bioelectron 2012; 38:1-10. [DOI: 10.1016/j.bios.2012.05.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/02/2012] [Accepted: 05/12/2012] [Indexed: 11/22/2022]
|
16
|
Existence of memory in membrane channels: analysis of ion current through a voltage-dependent potassium single channel. Cell Biol Int 2012; 36:973-9. [DOI: 10.1042/cbi20110673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Billes F, Mohammed-Ziegler I, Mikosch H. Transportation behavior of alkali ions through a cell membrane ion channel. A quantum chemical description of a simplified isolated model. J Mol Model 2012; 18:3627-37. [DOI: 10.1007/s00894-012-1364-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/17/2012] [Indexed: 11/30/2022]
|
18
|
Miśkiewicz J, Trela Z, Przestalski S, Karcz W. Superstatistics analysis of the ion current distribution function: Met3PbCl influence study. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 39:1397-406. [PMID: 20354691 DOI: 10.1007/s00249-010-0594-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 02/23/2010] [Accepted: 02/28/2010] [Indexed: 11/30/2022]
Abstract
A novel analysis of ion current time series is proposed. It is shown that higher (second, third and fourth) statistical moments of the ion current probability distribution function (PDF) can yield new information about ion channel properties. The method is illustrated on a two-state model where the PDF of the compound states are given by normal distributions. The proposed method was applied to the analysis of the SV cation channels of vacuolar membrane of Beta vulgaris and the influence of trimethyllead chloride (Met(3)PbCl) on the ion current probability distribution. Ion currents were measured by patch-clamp technique. It was shown that Met(3)PbCl influences the variance of the open-state ion current but does not alter the PDF of the closed-state ion current. Incorporation of higher statistical moments into the standard investigation of ion channel properties is proposed.
Collapse
Affiliation(s)
- Janusz Miśkiewicz
- Departments of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| | | | | | | |
Collapse
|
19
|
Xu L, Ivanov PC, Hu K, Chen Z, Carbone A, Stanley HE. Quantifying signals with power-law correlations: a comparative study of detrended fluctuation analysis and detrended moving average techniques. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 71:051101. [PMID: 16089515 DOI: 10.1103/physreve.71.051101] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2004] [Revised: 02/14/2005] [Indexed: 05/03/2023]
Abstract
Detrended fluctuation analysis (DFA) and detrended moving average (DMA) are two scaling analysis methods designed to quantify correlations in noisy nonstationary signals. We systematically study the performance of different variants of the DMA method when applied to artificially generated long-range power-law correlated signals with an a priori known scaling exponent alpha(0) and compare them with the DFA method. We find that the scaling results obtained from different variants of the DMA method strongly depend on the type of the moving average filter. Further, we investigate the optimal scaling regime where the DFA and DMA methods accurately quantify the scaling exponent alpha(0) , and how this regime depends on the correlations in the signal. Finally, we develop a three-dimensional representation to determine how the stability of the scaling curves obtained from the DFA and DMA methods depends on the scale of analysis, the order of detrending, and the order of the moving average we use, as well as on the type of correlations in the signal.
Collapse
Affiliation(s)
- Limei Xu
- Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
20
|
Chen Z, Hu K, Carpena P, Bernaola-Galvan P, Stanley HE, Ivanov PC. Effect of nonlinear filters on detrended fluctuation analysis. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 71:011104. [PMID: 15697577 DOI: 10.1103/physreve.71.011104] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Indexed: 05/22/2023]
Abstract
When investigating the dynamical properties of complex multiple-component physical and physiological systems, it is often the case that the measurable system's output does not directly represent the quantity we want to probe in order to understand the underlying mechanisms. Instead, the output signal is often a linear or nonlinear function of the quantity of interest. Here, we investigate how various linear and nonlinear transformations affect the correlation and scaling properties of a signal, using the detrended fluctuation analysis (DFA) which has been shown to accurately quantify power-law correlations in nonstationary signals. Specifically, we study the effect of three types of transforms: (i) linear ( y(i) =a x(i) +b) , (ii) nonlinear polynomial ( y(i) =a x(k)(i) ) , and (iii) nonlinear logarithmic [ y(i) =log ( x(i) +Delta) ] filters. We compare the correlation and scaling properties of signals before and after the transform. We find that linear filters do not change the correlation properties, while the effect of nonlinear polynomial and logarithmic filters strongly depends on (a) the strength of correlations in the original signal, (b) the power k of the polynomial filter, and (c) the offset Delta in the logarithmic filter. We further apply the DFA method to investigate the "apparent" scaling of three analytic functions: (i) exponential [exp (+/-x+a) ] , (ii) logarithmic [log (x+a) ] , and (iii) power law [ (x+a)(lambda) ] , which are often encountered as trends in physical and biological processes. While these three functions have different characteristics, we find that there is a broad range of values for parameter a common for all three functions, where the slope of the DFA curves is identical. We further note that the DFA results obtained for a class of other analytic functions can be reduced to these three typical cases. We systematically test the performance of the DFA method when estimating long-range power-law correlations in the output signals for different parameter values in the three types of filters and the three analytic functions we consider.
Collapse
Affiliation(s)
- Zhi Chen
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
21
|
Kotulska M, Koronkiewicz S, Kalinowski S. Self-similar processes and flicker noise from a fluctuating nanopore in a lipid membrane. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 69:031920. [PMID: 15089335 DOI: 10.1103/physreve.69.031920] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Revised: 12/12/2003] [Indexed: 05/24/2023]
Abstract
Stochastic properties of a fluctuating nanopore generated and sustained by an electric field in a lipid bilayer membrane are studied. It is shown that the process of voltage fluctuations, in the current clamp experiment, is a stochastic fractal with long memory, which is the main reason for its nonstationarity. The aging process contributes to the nonstationarity if molecular interactions in the membrane are weak. An attempt to classify the process reveals a non-Gaussian distribution with long tails, which contradicts the hypothesis of fractional Brownian motion, showing that stable motion may be possible. The self-similarity index, estimated by three different methods, depends on current value and membrane sensitivity to electric field in a well defined and explicable manner. The stochastic analysis provided for calculated conductance of nanopore revealed the process close to 1/f noise, the result observed only for the pores not exceeding 1 nm in diameter, induced in membranes with strong molecular interactions. Our results show that such a pore is the simplest biological system needed for flicker noise to occur, and the complexity of highly regulated protein channel is not a necessary factor. A case of noise 1/f(2), observed for a pore with impeded dynamics, suggests a process without memory in such a situation. A physical interpretation is presented for some of the results.
Collapse
Affiliation(s)
- Malgorzata Kotulska
- Division of Measuring and Medical Electronic Instruments, Wroclaw University of Technology, 50-370 Wroclaw, Poland.
| | | | | |
Collapse
|
22
|
Varotsos PA, Sarlis NV, Skordas ES. Attempt to distinguish electric signals of a dichotomous nature. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2003; 68:031106. [PMID: 14524749 DOI: 10.1103/physreve.68.031106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2002] [Revised: 05/27/2003] [Indexed: 05/24/2023]
Abstract
Three types of electric signals were analyzed: Ion current fluctuations in membrane channels (ICFMC), Seismic electric signals activities (SES), and "artificial" noises (AN). The wavelet transform, when applied to the conventional time domain, does not allow a classification of these signals, but does so in the "natural" time domain. A classification also becomes possible, if we study <chi(q)>-<chi>(q) versus q, where chi stands for the "natural" time. For q values approximately between 1 and 2 the signals are classified and ICFMC lies between the other two types. For q=1, the "entropy" S identical with <chilnchi>-<chi>ln<chi> of ICFMC almost equals that of a "uniform" distribution, while the AN and SES have larger and smaller S values, respectively. The recent [P. Varotsos, N. Sarlis, and E. Skordas, Phys. Rev. E 67, 021109 (2003)] finding that, in short time scales, both SES and AN (which are shown to be non-Markovian) result in comparable detrended fluctuation analysis exponents alpha in (1.0,1.5) is revisited. Even a Markovian dichotomous time series, in short time scales, leads to similar alpha exponents.
Collapse
Affiliation(s)
- P A Varotsos
- Solid State Section, Physics Department, University of Athens, Panepistimiopolis, Zografos, Athens 157 84, Greece.
| | | | | |
Collapse
|
23
|
Varotsos PA, Sarlis NV, Skordas ES. Long-range correlations in the electric signals that precede rupture: further investigations. PHYSICAL REVIEW E 2003; 67:021109. [PMID: 12636655 DOI: 10.1103/physreve.67.021109] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2002] [Revised: 10/25/2002] [Indexed: 11/07/2022]
Abstract
The correlations within the time series of the seismic electric signal (SES) activities have been studied in a previous paper [P. Varotsos, N. Sarlis, and E. Skordas, Phys. Rev. E 66, 011902 (2002)]. Here, we analyze the time series of successive high- and low-level states' durations. The existence of correlation between the states is investigated by means of Hurst and detrended fluctuation analysis (DFA). The multifractal DFA (MF-DFA) is also employed. The results point to a stronger correlation, and hence longer memory, in the series of the high-level states. Furthermore, an analysis in the "natural" time domain reveals that certain power spectrum characteristics seem to distinguish SES activities from "artificial" (man-made) electric noises. More precisely, for natural frequencies 0<phi<0.5, the curves of the SES activities and artificial noises lie above and below, respectively, that of the "uniform" distribution (UD). A classification of these two types of electric signals (SES activities, artificial noises), cannot be achieved on the basis of the values of the power-law exponents alone, if the Hurst analysis, DFA, and MF-DFA are applied to the original time series. The latter two methods, however, seem to allow a distinction between the SES activities and artificial noises when treating them (not in conventional the time frame, but) in the natural time domain. To further test the techniques, a time series produced by another system was examined. We chose a signal of ion current fluctuations in membrane channels (ICFMCs). The following conclusions, among others, have been obtained: First, the power spectrum analysis in the natural time domain shows that the ICFMC curve almost coincides (in the range 0<phi<0.5) with that of the UD, and hence ICFMC lies just in the boundary between the SES activities and artificial noises. Second, MF-DFA indicates monofractality for the ICFMCs with a generalized Hurst exponent h=0.84+/-0.03 in the range 7-70 ms.
Collapse
Affiliation(s)
- P A Varotsos
- Solid State Section, Physics Department, University of Athens, Panepistimiopolis, Zografos, Athens 157 84, Greece.
| | | | | |
Collapse
|
24
|
Varotsos PA, Sarlis NV, Skordas ES. Long-range correlations in the electric signals that precede rupture. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2002; 66:011902. [PMID: 12241379 DOI: 10.1103/physreve.66.011902] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2002] [Indexed: 05/23/2023]
Abstract
The Smoluchowski-Chapman-Kolmogorov functional equation is applied to the electric signals that precede rupture. The results suggest a non-Markovian character of the analyzed data. The rescaled range Hurst and detrended fluctuation analyses, as well as that related with the "mean distance a walker spanned," lead to power-law exponents, which are consistent with the existence of long-range correlations. A "universality" in the power spectrum characteristics of these signals emerges, if an analysis is made (not in the conventional time frame, but) in the "natural" time domain. Within this frame, it seems that certain power spectrum characteristics of ion current fluctuations in membrane channels distinguish them from the electric signals preceding rupture. The latter exhibit a behavior compatible with that expected from a model based on the random field Ising Hamiltonian at the critical point.
Collapse
Affiliation(s)
- P A Varotsos
- Solid State Section, Physics Department, University of Athens Panepistimiopolis, Zografos, Athens 157 84, Greece.
| | | | | |
Collapse
|