• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4696811)   Today's Articles (4829)
For: Zheng Z, Wang X, Cross MC. Transitions from partial to complete generalized synchronizations in bidirectionally coupled chaotic oscillators. Phys Rev E Stat Nonlin Soft Matter Phys 2002;65:056211. [PMID: 12059684 DOI: 10.1103/physreve.65.056211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2001] [Revised: 01/29/2002] [Indexed: 05/23/2023]
Number Cited by Other Article(s)
1
Rakshit S, Ghosh D. Generalized synchronization on the onset of auxiliary system approach. CHAOS (WOODBURY, N.Y.) 2020;30:111102. [PMID: 33261321 DOI: 10.1063/5.0030772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/12/2020] [Indexed: 06/12/2023]
2
Koronovskii AA, Moskalenko OI, Pivovarov AA, Evstifeev EV. Intermittent route to generalized synchronization in bidirectionally coupled chaotic oscillators. CHAOS (WOODBURY, N.Y.) 2020;30:083133. [PMID: 32872830 DOI: 10.1063/5.0007156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
3
Yi M, Wang C, Yang K. Discontinuity-induced intermittent synchronization transitions in coupled non-smooth systems. CHAOS (WOODBURY, N.Y.) 2020;30:033113. [PMID: 32237761 DOI: 10.1063/1.5123299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 02/14/2020] [Indexed: 06/11/2023]
4
Rakshit S, Faghani Z, Parastesh F, Panahi S, Jafari S, Ghosh D, Perc M. Transitions from chimeras to coherence: An analytical approach by means of the coherent stability function. Phys Rev E 2019;100:012315. [PMID: 31499842 DOI: 10.1103/physreve.100.012315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 06/10/2023]
5
Sabarathinam S, Prasad A. Generalized synchronization in a conservative and nearly conservative systems of star network. CHAOS (WOODBURY, N.Y.) 2018;28:113107. [PMID: 30501203 DOI: 10.1063/1.5030730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 10/15/2018] [Indexed: 06/09/2023]
6
Lin W, Wang Y, Ying H, Lai YC, Wang X. Consistency between functional and structural networks of coupled nonlinear oscillators. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015;92:012912. [PMID: 26274252 DOI: 10.1103/physreve.92.012912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Indexed: 06/04/2023]
7
Fu C, Lin W, Huang L, Wang X. Synchronization transition in networked chaotic oscillators: the viewpoint from partial synchronization. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014;89:052908. [PMID: 25353862 DOI: 10.1103/physreve.89.052908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Indexed: 06/04/2023]
8
Liu S, Zhan M. Clustering versus non-clustering phase synchronizations. CHAOS (WOODBURY, N.Y.) 2014;24:013104. [PMID: 24697366 DOI: 10.1063/1.4861685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
9
Moskalenko OI, Koronovskii AA, Hramov AE. Inapplicability of an auxiliary-system approach to chaotic oscillators with mutual-type coupling and complex networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013;87:064901. [PMID: 23848814 DOI: 10.1103/physreve.87.064901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 01/25/2013] [Indexed: 06/02/2023]
10
Keller G, Jafri HH, Ramaswamy R. Nature of weak generalized synchronization in chaotically driven maps. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013;87:042913. [PMID: 23679495 DOI: 10.1103/physreve.87.042913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Indexed: 06/02/2023]
11
Li BW, Fu C, Zhang H, Wang X. Synchronization and quorum sensing in an ensemble of indirectly coupled chaotic oscillators. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012;86:046207. [PMID: 23214663 DOI: 10.1103/physreve.86.046207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 07/04/2012] [Indexed: 06/01/2023]
12
Chen J, Lu JA, Wu X, Zheng WX. Generalized synchronization of complex dynamical networks via impulsive control. CHAOS (WOODBURY, N.Y.) 2009;19:043119. [PMID: 20059215 DOI: 10.1063/1.3268587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
13
Guan S, Wang X, Gong X, Li K, Lai CH. The development of generalized synchronization on complex networks. CHAOS (WOODBURY, N.Y.) 2009;19:013130. [PMID: 19334994 DOI: 10.1063/1.3087531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
14
Guo L, Xu Z. Hölder continuity of two types of generalized synchronization manifold. CHAOS (WOODBURY, N.Y.) 2008;18:033134. [PMID: 19045472 DOI: 10.1063/1.2978180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
15
Hung YC, Huang YT, Ho MC, Hu CK. Paths to globally generalized synchronization in scale-free networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008;77:016202. [PMID: 18351921 DOI: 10.1103/physreve.77.016202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 12/03/2007] [Indexed: 05/26/2023]
16
Avila JFM, Vicente R, Leite JRR, Mirasso CR. Synchronization properties of bidirectionally coupled semiconductor lasers under asymmetric operating conditions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007;75:066202. [PMID: 17677335 DOI: 10.1103/physreve.75.066202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Indexed: 05/16/2023]
17
Synchronization on coupled dynamical networks. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11467-006-0047-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
18
Suetani H, Iba Y, Aihara K. Detecting generalized synchronization between chaotic signals: a kernel-based approach. ACTA ACUST UNITED AC 2006. [DOI: 10.1088/0305-4470/39/34/009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
19
Guan S, Li K, Lai CH. Chaotic synchronization through coupling strategies. CHAOS (WOODBURY, N.Y.) 2006;16:023107. [PMID: 16822010 DOI: 10.1063/1.2193684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
20
Guan S, Lai YC, Lai CH. Effect of noise on generalized chaotic synchronization. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006;73:046210. [PMID: 16711920 DOI: 10.1103/physreve.73.046210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Indexed: 05/09/2023]
21
Vincent UE, Kenfack A, Njah AN, Akinlade O. Bifurcation and chaos in coupled ratchets exhibiting synchronized dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005;72:056213. [PMID: 16383733 DOI: 10.1103/physreve.72.056213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 08/15/2005] [Indexed: 05/05/2023]
22
Wang X, Gong X, Zhan M, Lai CH. Public-key encryption based on generalized synchronization of coupled map lattices. CHAOS (WOODBURY, N.Y.) 2005;15:23109. [PMID: 16035885 DOI: 10.1063/1.1916207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
23
Baptista MS, Silva TP, Sartorelli JC, Caldas IL, Rosa E. Phase synchronization in the perturbed Chua circuit. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2003;67:056212. [PMID: 12786255 DOI: 10.1103/physreve.67.056212] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2002] [Indexed: 05/24/2023]
24
He D, Stone L, Zheng Z. Analysis of generalized synchronization in directionally coupled chaotic phase-coherent oscillators by local minimal fluctuations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2002;66:036208. [PMID: 12366225 DOI: 10.1103/physreve.66.036208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2002] [Indexed: 05/23/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA