1
|
Daryaei E. Universality and crossover behavior of single-step growth models in 1+1 and 2+1 dimensions. Phys Rev E 2020; 101:062108. [PMID: 32688564 DOI: 10.1103/physreve.101.062108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
We study the kinetic roughening of the single-step (SS) growth model with a tunable parameter p in 1+1 and 2+1 dimensions by performing extensive numerical simulations. We show that there exists a very slow crossover from an intermediate regime dominated by the Edwards-Wilkinson class to an asymptotic regime dominated by the Kardar-Parisi-Zhang (KPZ) class for any p<1/2. We also identify the crossover time, the nonlinear coupling constant, and some nonuniversal parameters in the KPZ equation as a function p. The effective nonuniversal parameters are continuously decreasing with p but not in a linear fashion. Our results provide complete and conclusive evidence that the SS model for p≠1/2 belongs to the KPZ universality class in 2+1 dimensions.
Collapse
Affiliation(s)
- E Daryaei
- Department of Physics, Faculty of Basic Sciences, University of Neyshabur, P.O. Box 91136-899, Neyshabur, Iran
| |
Collapse
|
2
|
Kolakowska A, Novotny MA. Nonuniversal effects in mixing correlated-growth processes with randomness: interplay between bulk morphology and surface roughening. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:012147. [PMID: 25679610 DOI: 10.1103/physreve.91.012147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Indexed: 06/04/2023]
Abstract
To construct continuum stochastic growth equations for competitive nonequilibrium surface-growth processes of the type RD+X that mixes random deposition (RD) with a correlated-growth process X, we use a simplex decomposition of the height field. A distinction between growth processes X that do and do not create voids in the bulk leads to the definition of the effective probability p(eff) of the process X that is a measurable property of the bulk morphology and depends on the activation probability p of X in the competitive process RD+X. The bulk morphology is reflected in the surface roughening via nonuniversal prefactors in the universal scaling of the surface width that scales in p(eff). The equation and the resulting scaling are derived for X in either a Kardar-Parisi-Zhang or Edwards-Wilkinson universality class in (1+1) dimensions and are illustrated by an example of X being a ballistic deposition. We obtain full data collapse on its corresponding universal scaling function for all p∈(0;1]. We outline the generalizations to (1+n) dimensions and to many-component competitive growth processes.
Collapse
Affiliation(s)
- A Kolakowska
- Department of Physics, The University of Memphis, Memphis, Tennessee 38152, USA
| | - M A Novotny
- Department of Physics and Astronomy, and Center for Computational Sciences, P.O. Box 5167, Mississippi State University, Mississippi 39762-5167, USA
| |
Collapse
|
3
|
Silveira FA, Aarão Reis FDA. Langevin equations for competitive growth models. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:011601. [PMID: 22400575 DOI: 10.1103/physreve.85.011601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Indexed: 05/31/2023]
Abstract
Langevin equations for several competitive growth models in one dimension are derived. For models with crossover from random deposition (RD) to some correlated deposition (CD) dynamics, with small probability p of CD, the surface tension ν and the nonlinear coefficient λ of the associated equations have linear dependence on p due solely to this random choice. However, they also depend on the regularized step functions present in the analytical representations of the CD, whose expansion coefficients scale with p according to the divergence of local height differences when p→0. The superposition of those scaling factors gives ν~p(2) for random deposition with surface relaxation (RDSR) as the CD, and ν~p, λ~p(3/2) for ballistic deposition (BD) as the CD, in agreement with simulation and other scaling approaches. For bidisperse ballistic deposition (BBD), the same scaling of RD-BD model is found. The Langevin equation for the model with competing RDSR and BD, with probability p for the latter, is also constructed. It shows linear p dependence of λ, while the quadratic dependence observed in previous simulations is explained by an additional crossover before the asymptotic regime. The results highlight the relevance of scaling of the coefficients of step function expansions in systems with steep surfaces, which is responsible for noninteger exponents in some p-dependent stochastic equations, and the importance of the physical correspondence of aggregation rules and equation coefficients.
Collapse
Affiliation(s)
- F A Silveira
- Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340 Niterói, RJ, Brazil.
| | | |
Collapse
|
4
|
Chou YL, Pleimling M. Parameter-free scaling relation for nonequilibrium growth processes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:051605. [PMID: 19518465 DOI: 10.1103/physreve.79.051605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Indexed: 05/27/2023]
Abstract
We discuss a parameter-free scaling relation that yields a complete data collapse for large classes of nonequilibrium growth processes. We illustrate the power of this scaling relation through various growth models, such as the competitive growth model with random deposition and random deposition with surface diffusion or the restricted solid-on-solid model with different nearest-neighbor height differences, as well as through a deposition model with temperature-dependent diffusion. The scaling relation is compared to the familiar Family-Vicsek relation, and the limitations of the latter are highlighted.
Collapse
Affiliation(s)
- Yen-Liang Chou
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0435, USA
| | | |
Collapse
|
5
|
Aarão Reis F, Badiali J, Pauporté T, Lincot D. Statistical modelling of electrochemical deposition of nanostructured hybrid films with ZnO–Eosin Y as a case example. J Electroanal Chem (Lausanne) 2006. [DOI: 10.1016/j.jelechem.2006.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Oliveira TJ, Dechoum K, Redinz JA, Aarão Reis FDA. Universal and nonuniversal features in the crossover from linear to nonlinear interface growth. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:011604. [PMID: 16907104 DOI: 10.1103/physreve.74.011604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 06/14/2006] [Indexed: 05/11/2023]
Abstract
We study a restricted solid-on-solid model involving deposition and evaporation with probabilities p and 1 - p, respectively, in one-dimensional substrates. It presents a crossover from Edwards-Wilkinson (EW) to Kardar-Parisi-Zhang (KPZ) scaling for p approximately 0.5. The associated KPZ equation is analytically derived, exhibiting a coefficient lambda of the nonlinear term proportional to q identical with p - 1/2, which is confirmed numerically by calculation of tilt-dependent growth velocities for several values of p. This linear lambda - q relation contrasts to the apparently universal parabolic law obtained in competitive models mixing EW and KPZ components. The regions where the interface roughness shows pure EW and KPZ scaling are identified for 0.55< or =p< or =0.8, which provides numerical estimates of the crossover times tc. They scale as tc approximately lambda -phi with phi=4.1+/-0.1, which is in excellent agreement with the theoretically predicted universal value phi=4 and improves previous numerical estimates, which suggested phi approximately 3.
Collapse
Affiliation(s)
- T J Oliveira
- Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340 Niterói RJ, Brazil.
| | | | | | | |
Collapse
|
7
|
Aarão Reis FDA. Scaling in the crossover from random to correlated growth. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:021605. [PMID: 16605348 DOI: 10.1103/physreve.73.021605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Indexed: 05/08/2023]
Abstract
In systems where deposition rates are high compared to diffusion, desorption, and other mechanisms that generate correlations, a crossover from random to correlated growth of surface roughness is expected at a characteristic time t0. This crossover is analyzed in lattice models via scaling arguments, with support from simulation results presented here and in other works. We argue that the amplitudes of the saturation roughness and of the saturation time t(x) scale as t0(1/2) and t0, respectively. For models with lateral aggregation, which typically are in the Kardar-Parisi-Zhang (KPZ) class, we show that t0 approximately p(-1), where p is the probability of the correlated aggregation mechanism to take place. However, t0 approximately p(-2) is obtained in solid-on-solid models with single-particle deposition attempts. This group includes models in various universality classes, with numerical examples being provided in the Edwards-Wilkinson (EW), KPZ, and Villain-Lai-Das Sarma (nonlinear molecular-beam epitaxy) classes. Most applications are for two-component models in which random deposition, with probability 1-p, competes with a correlated aggregation process with probability p. However, our approach can be extended to other systems with the same crossover, such as the generalized restricted solid-on-solid model with maximum height difference S, for large S. Moreover, the scaling approach applies to all dimensions. In the particular case of one-dimensional KPZ processes with this crossover, we show that t0 approximately nu(-1) and nu approximately lambda(2/3), where nu and lambda are the coefficients of the linear and nonlinear terms of the associated KPZ equations. The applicability of previous results to models in the EW and KPZ classes is discussed.
Collapse
Affiliation(s)
- F D A Aarão Reis
- Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340 Niterói RJ, Brazil
| |
Collapse
|
8
|
Kolakowska A, Novotny MA, Verma PS. Universal scaling in mixing correlated growth with randomness. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:011603. [PMID: 16486157 DOI: 10.1103/physreve.73.011603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 12/05/2005] [Indexed: 05/06/2023]
Abstract
We study two-component growth that mixes random deposition (RD) with a correlated growth process that occurs with probability p. We find that these composite systems are in the universality class of the correlated growth process. For RD blends with either Edwards-Wilkinson or Kardar-Parisi-Zhang processes, we identify a nonuniversal exponent in the universal scaling in p.
Collapse
Affiliation(s)
- A Kolakowska
- Department of Physics and Astronomy, and the ERC Center for Computational Sciences, P.O. Box 5167, Mississippi State, MS 39762-5167, USA
| | | | | |
Collapse
|
9
|
Braunstein LA, Lam CH. Exact scaling in competitive growth models. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:026128. [PMID: 16196665 DOI: 10.1103/physreve.72.026128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Indexed: 05/04/2023]
Abstract
A competitive growth model (CGM) describes the aggregation of a single type of particle under two different growth rules with occurrence probabilities p and 1-p . We explain the origin of the scaling behavior of the resulting surface roughness at small p for two CGM's which describe random deposition (RD) competing with ballistic deposition and RD competing with the Edward-Wilkinson (EW) growth rule. Exact scaling exponents are derived. The scaling behavior of the coefficients in the corresponding continuum equations are also deduced. Furthermore, we suggest that, in some CGM's, the p dependence on the coefficients of the continuum equation that represents their universality class can be nontrivial. In some cases, the process cannot be represented by a unique universality class. In order to show this, we introduce a CGM describing RD competing with a constrained EW model. This CGM shows a transition in the scaling exponents from RD to a Kardar-Parisi-Zhang behavior when p is close to 0 and to a Edward-Wilkinson one when p is close to 1 at practical time and length scales. Our simulation results are in excellent agreement with the analytic predictions.
Collapse
Affiliation(s)
- L A Braunstein
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata, Argentina
| | | |
Collapse
|
10
|
Kolakowska A, Novotny MA, Verma PS. Roughening of the interfaces in (1+1) -dimensional two-component surface growth with an admixture of random deposition. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 70:051602. [PMID: 15600623 DOI: 10.1103/physreve.70.051602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2004] [Revised: 07/09/2004] [Indexed: 05/24/2023]
Abstract
We simulate competitive two-component growth on a one-dimensional substrate of L sites. One component is a Poisson-type deposition that generates Kardar-Parisi-Zhang (KPZ) correlations. The other is random deposition (RD). We derive the universal scaling function of the interface width for this model and show that the RD admixture acts as a dilatation mechanism to the fundamental time and height scales, but leaves the KPZ correlations intact. This observation is generalized to other growth models. It is shown that the flat-substrate initial condition is responsible for the existence of an early nonscaling phase in the interface evolution. The length of this initial phase is a nonuniversal parameter, but its presence is universal. We introduce a method to measure the length of this initial nonscaling phase. In application to parallel and distributed computations, the important consequence of the derived scaling is the existence of the upper bound for the desynchronization in a conservative update algorithm for parallel discrete-event simulations. It is shown that such algorithms are generally scalable in a ring communication topology.
Collapse
Affiliation(s)
- A Kolakowska
- Department of Physics and Astronomy, and the ERC Center for Computational Sciences, P.O. Box 5167, Mississippi State, MS 39762-5167, USA
| | | | | |
Collapse
|
11
|
Muraca D, Braunstein LA, Buceta RC. Universal behavior of the coefficients of the continuous equation in competitive growth models. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 69:065103. [PMID: 15244651 DOI: 10.1103/physreve.69.065103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Indexed: 05/24/2023]
Abstract
The competitive growth models (CGM) involving only one kind of particles, are a mixture of two processes, one with probability p and the other with probability 1-p. The p dependence produce crossovers between two different regimes. We demonstrate that the coefficients of the continuous equation, describing their universality classes, are quadratic in p (or 1-p ). We show that the origin of such dependence is the existence of two different average time rates. Thus, the quadratic p dependence is a universal behavior of all the (CGM). We derive analytically the continuous equations for two CGM, in 1+1 dimensions, from the microscopic rules using a regularization procedure. We propose generalized scalings that reproduce the scaling behavior in each regime. In order to verify the analytic results and the scalings, we perform numerical integrations of the derived analytical equations. The results are in excellent agreement with those of the microscopic CGM presented here and with the proposed scalings.
Collapse
Affiliation(s)
- D Muraca
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata, Argentina
| | | | | |
Collapse
|